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Preface

This Monograph is essentially a compilation of published technical papers that grew from
a research collaboration by the authors initiated between Stanford University and Mobil
Technology Corporation in early 1996.

In early 1996, the methods described here were just so many ’brainstormed’ items on a
whiteboard at Stanford, which attempted to solve the long-standing problem of generating
reservoir models that by construction honor production data. By mid-1998, the ideas had
been brought to completed computer codes and successful tests on example data. During
the same two-year period, many other researchers were advancing technologies to solve
this difficult problem, and the literature has become very rich in this area since 1996.
This monograph, however, by capturing the work of the authors, provides an important
foundation for those who want to familiarize themselves with this field, whether they want
to practice the art or develop the science.
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Chapter 1

Introduction

Optimal reservoir management requires reliable reservoir performance forecasts with as
little uncertainty as possible. Incomplete data and inability to model the physics of fluid
flow at a suitably small scale lead to uncertainty. Subsurface reservoir models that “by
construction” honor the historical production data should yield significantly more accurate
predictions of reservoir performance with reduced uncertainty than those that do not. This
monograph aims to present a few recently developed methods to link temporal production
data and static spatial constraints on the distribution of permeability in reservoir models.
This compilation does not bring forth the entire technology being used in the science or
craft, as one might argue, of data integration in reservoir characterization. The methods
discussed here establish the “missing link” in reservoir characterization for three important
types of dynamic data: (1) single-phase well test data, (2) single-phase pressure and rate
data, and (3) multiphase (incompressible fluid), multiple-well pressure and fractional flow
rate data from wells. These techniques yield relatively coarse spatial representations of
permeability that recognize the resolution of the data. The coarse scale representations are
then used to constrain fine scale reservoir models when integrated with seismic, geologic,
and petrophysical data.

1.1 Motivation for the Monograph

The motivation for this monograph was the recognition that although rapid development
is being made on dynamic data integration in reservoir characterization, there exists no
concise text on this active area of research. This monograph should help the researchers
and professionals in comprehending the problem better with simple illustrated examples
and exercises. The methods discoursed here will prepare them to address more complicated
reservoir scenarios. Reliable predictions of future reservoir performance require reservoir
models that honor all available data including conceptual geological data, seismic data,
core data, well log data, DST/RFT data, well test data, and historical production data.
Each source of data carries information at different scales and with varying levels of preci-
sion, related to the true distribution of petrophysical and fluid properties in the reservoir.
The challenge of subsurface prediction is to integrate all data sources. Integrating all the
available data in numerical geological models will make it possible for reservoir engineers to
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2 CHAPTER 1. INTRODUCTION

much more quickly perform flow simulation studies. Reducing the calendar and engineering
time for flow studies will add significant value by providing more time to optimize reservoir
management plans.

The honoring of historical production data has been a missing component of this process.
Early approaches to numerical history matching by a single-stage mathematical inversion
have been hampered by the following difficulties: (1) excessive CPU execution time for
even relatively small reservoir models, (2) limiting, simplifying assumptions, e.g., linear
relationship between pressure and reservoir properties, Gaussian distribution, small vari-
ability, and/or uniform flow, used in order to speed up the computations of the inversion
process; these assumptions are often inconsistent with real complexity, (3) often only one
type of data can be considered at a time, at the expense of information coming from other
data sources such as seismic and geology, and (4) there was a significant difficulty with
multiphase flow data, leading to unconstrained, nonunique, and computationally intensive
methods. So that even today, the most common history matching technique practiced is
manual iteration.

More recent numerical methods have combined the nonlinear inverse calculation with
stochastic modeling or streamlines for multiphase in various ways, and although much
progress has been reported, almost all have suffered from many of the limitations of the
early techniques. In essence, there has been a continuing attempt to invert the production
data directly to a detailed three-dimensional reservoir model. One must recognize that the
production data measurement at each well is essentially a single-point in space which by
itself can only yield effective properties over a large volume. Attempts to build a detailed
subsurface model from that data alone do not have a high chance of success.

Figure 1.1 shows a conceptual illustration of the approach. The production data, as well
as various other data, each yield a prior model. Each prior model is the best interpretation
of the data and preserves the resolution and uncertainty inherent in the data. Ultimately,
the prior models are integrated into unified predictive reservoir models using optimization
techniques. Production data at wells are inverted to a coarse scale maps of permeability.
These maps are then used as constraints along with those from other available data in an
optimization procedure. It is this step of building a prior model from production data that
is the focus of this monograph.

1.2 Problem Description

Reservoir development planning using detailed 3D reservoir models requires models of struc-
ture, stratigraphy, and properties. Interpretive, deterministic and geostatistical techniques
for constructing models of lithofacies and properties are used that constrain the models to
static data from core, logs, seismic, and geologic interpretation. In general, however, honor-
ing all data including the dynamic pressure or historical production data is quite difficult.
In practice, trial-and-error history matching is still the most common approach at the final
stage of modeling. The problem of fully integrating production and pressure data in the
construction of reservoir models lends itself to a variety of approaches. Property models
within the volume of influence of a well are generated through a one-step mathematical
inversion of the pressure response. The problems with these techniques are the intense
computations needed to generate a solution that is not unique and may be inconsistent
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Figure 1.1: A conceptual illustration of the multistage indirect inversion technique.

with some of the static data. In other approaches, the property models are generated in
several steps with a first-step coding of the well-derived data into a spatial property repre-
sentation. A detailed classification of the techniques available for dynamic data integration
is discussed in Chapter 2.

1.2.1 Limitations of Single-stage Methods

Mathematical inversion techniques have been applied primarily to transient well pressure
data. The approach formulates an inverse problem with the intent to explicitly honor raw
pressure data, and by doing so, completely generate a property model that reproduces the
data explicitly. In general, some assumptions about flow equations (e.g., linear), covariance,
or cross-covariance of reservoir and flow parameters are needed. The mathematical inversion
method is attractive in the sense that production data are explicitly honored in the reservoir
model.

There are, however, a number of limitations with these techniques. Usually they are
CPU intensive, and are thus limited to relatively small model sizes. Moreover, almost all
these approaches call for simplifying assumptions in order to speed up the computations.
Apart from such simplification, it has been found quite difficult to handle production data
for multiphase flow conditions, multiple data types and other data such as geophysical data
and geological knowledge, without having inconsistent results.
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1.2.2 Improvement with Multistage Approaches

The multistage approaches rely on inversion of the production data into a spatial represen-
tation of reservoir attributes that impact flow, e.g. lithofacies, permeability, or barriers. By
“multistage” we mean than there is first step of inverting the production data to a “coarse-
scale” spatial representation. A second step follows that integrates the coarse model with
other data (e.g., seismic) through optimization or cosimulation.

Multistage approaches have great flexibility to account for different data types and to
integrate reservoir characteristics that contributed most to the raw production data. These
approaches utilize single-stage mathematical inversion techniques to provide coarse-scale
spatial representations that are grounded in flow processes and yet honor preservation of
geological and other data at appropriate scale. However, the resulting reservoir model may
not reproduce the production data exactly after the interpretation stage.

1.2.3 Improving the Estimation of Global Reservoir Parameters

Production data can be used to improve the estimation of global reservoir parameters,
such as the mean and covariance of reservoir properties. Once estimated, such statistical
parameters are used as inputs in geostatistical techniques to construct reservoir models.
The contribution of production data lies in the improvement in the estimation of statistical
parameters describing the reservoir heterogeneity. In a few cases, such as when the reservoir
parameters are Gaussian, and the relationship between the reservoir parameter and pressure
data are linear, the constructed geostatistical reservoir model may also directly honor the
pressure data.

In addition to facies, porosity and permeability distributions, production data have an
imprint on the communication between the wells, connectivity between and within reservoir
strata, presence of structures like sealing faults, connectivity across the faults, etc. With
additional evidence to corroborate such presence or quantification as applicable, each of
these features can be captured in the reservoir models through production data integration.
A plausible approach may be construction of some probabilistic maps and incorporation of
such maps into detailed reservoir models in the optimization or annealing stage, which will
be discussed later.

1.3 Inversion Methodology

The inversion methodology adapted here can be considered as a multistage indirect inver-
sion technique. It is believed that each type of dynamic well data contains information
about some subset of the spatial property distribution, for example, facies proportion or
permeability anisotropy. Thus, by taking a process-specific approach, one should be able
to interpret dynamic data as some spatial representation.

The approach is more attractive because of its ability to account for different types of
production data and the coding of these data into spatial data through some interpretive
basis on different flow processes. Also, this method integrates only the “actual” information
behind the raw production data. Hence, this provides greater insight into reservoir systems
and can better capture structures. Techniques for computing kh from pressure response
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and flow pathways from tracer data, developed from inversion methods, are used to assist
in the geological coding.

The central idea behind this monograph is to assemble and test a set of analytical and
numerical tools to extract the spatial “essence” from production data and then to integrate
these data in detailed reservoir models. A multistage geological coding technique is devel-
oped as a viable and more accurate reservoir modeling tool. There were significant technical
issues in making this a reality. Inversion methods applicable to limited regions (e.g., the
influence area of a well-test) had to be extended to larger interwell region. Interpretive tools
were developed for a variety of production data to translate the production data into spa-
tial representations of reservoir heterogeneities. Tools were devised to integrate production
data consistently with other information such as seismic data. Consistency and validity of
production data constraints were checked by comparing with data from different sources.

This indirect multistage approach could significantly enhance reservoir management and
development planning by building geologic models that are more predictive, and significantly
reduce the resources required to achieve history match. More specifically, enhanced predic-
tive ability of flow simulation is possible by providing a quantitative geological description
consistent with historical flow data. Also, reservoir management is improved by allowing
a greater number of development options to be considered. More importantly, production
data is integrated in a spatial context that is consistent with all geological information.

1.4 Types of Production Data and their Spatial Representa-

tion

In general, from a provenance perspective, production data may be summarized into three
main groups: single-well test data, multiple-well test data, and historical production data.
From a process perspective, each data type has the potential to inform us about some subset
of spatial characteristics. In the following sections, the spatial representations from each
data type and some issues concerning our ability to extract these spatial data are listed.

1.4.1 Single-well Test Data

Mathematical inversion methods for single well test pressure data (see Table 1.1) and in-
terpretive tools are largely in place [64, 94, 150, 162]. This is perhaps the subject of most
well test analyses research. Well test interpretation is a standard reservoir engineering
practice. Some of the typical single-well test data are RFT data, drawdown/buildup test
data, variable rate test data, production logs and permanent pressure gauges. For instance,
interpretation of RFT data is quite useful particularly for decisions like production strategy,
change in well configurations, well workovers or perforation jobs.

1.4.2 Multiple-well Test Data

Compared to single-well test data, multiple-well test data (see Table 1.2) are more extensive
in terms of areal coverage and provide specific connectivity information between wells. Data
sufficiency, i.e., whether sufficient data are available to establish significant contributions,
is an important issue. Suitable method to quantify connectivity between two locations is
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Data Available Spatial Representation
Pressure as function of depth - Communication between strata
(e.g., RFT) - Communication across faults

- Location of fluid contacts
Buildup/drawdown test - Distance to boundaries
p(t) - Effective kh

- Flow regime (e.g., fractures)
- Aquifer influx/fluid extent

Multirate test data - More details
- Layer productivity

Production logging (q(depth)) - Permeability of different layers/strata
(ratio or “relative” k between layers)

Permanent pressure gauges - kh for coarse grid or information between wells
(p(t), t from 0 to present) - “Map” interwell region

- Boundaries and interwell communication

Table 1.1: Typical single-well test data with their spatial representation

Data Available Spatial Representation
Interference tests - Presence of sealing faults
p(u, t), q(u, t) and - Fault transmissibility
p(u′, t), q(u′, t) - Qualitative measure of connectivity

- Effective k
- Flow/pressure pathways

Tracer data - More unique model
- Tell how a well is isolated or connected with other wells

Table 1.2: Typical multiple-well test data with their spatial representation
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Data Available Spatial Representation
P , qo, qg as functions of - kh at each well (relatively larger areas)
dimensionless time at each well - Drainage volume for each well

- Local facies information indirectly through
kro/krg ratios

- kcoarse scale effective permeability
- Interwell communication from fractional
flow/pressure data

Table 1.3: Typical historical production data with their spatial representation

imperative. The approach of geo-objects, collections of locations/blocks connected to each
other, is used for this purpose.

1.4.3 Historical Production Data

According to production mechanisms, historical production data (see Table 1.3) may be
from different sources. The classification can be with respect to reservoir depletion with or
without water drive, with gas-cap drive, water injection or gas injection. Each of these has
unique implementation and interpretive issues.

Depletion without water drive

Expansion drive and gravity segregation drive are the main sources of reservoir potential in
these situations. Estimation procedure of drainage volume for each well should be properly
devised. Relative permeability ratios (gas to oil), kro

krg
, may also explain something about

the lithofacies proportions within drainage area, since different facies usually have different
kro
krg

ratios.

Depletion with water drive

Before breakthrough of water, no new information on the spatial distribution of hetero-
geneities than that from single-well test or multiple-well test data is available. The data
reveal almost same information as in the case of depletion without water drive. After water
breakthrough fractional recovery data (qw, qo) are available. Original water contact data
(e.g. surface-point connectivity), kcoarse scale effective permeability distribution may be ob-
tained from the available data. Also, kro

krw
may indicate facies proportion in the “contacted

region”.

Depletion with gas-cap drive

These data are similar to those available from water-drive depletion, except between pro-
duction wells and original gas-cap, instead of aquifer. Interwell connectivity data and the
stratigraphic surface correlation can be established. Fractional recovery data (kro

krg
) may

indicate facies proportion. Distribution of kcoarse scale may be derived from well and drive
data.
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Injection (of water or gas)

More definitive determination of ke between wells, particularly after breakthrough, is possi-
ble. Flow capacity (kh) around injection wells, connected volume between injector/producer
pairs can be estimated. Breakthrough times may explain anisotropic variogram, interwell
facies connectivity, and permeability distribution. Measurement of heterogeneities, calibra-
tion and calculation of connected volume from the 3D reservoir model are crucial issues.

1.5 Data Developed in this Monograph

The three different types of production data are considered in this monograph:

� Single-well test data: In the radial flow regime of a well test, one calculates perme-
ability values representing weighted averages of permeabilities within dimensionless
time-dependent annular reservoir volumes around the well. The approach discussed
here uses two parameters to represent the volume-of-averaging and the type of av-
eraging. Both parameters are derived by a simple calibration process. The method
is tested with a number of 2D and 3D examples of varying size, grid discretization,
anisotropy, permeability heterogeneity, and lithofacies architecture. The limitations
and range of applicability have been documented.

� Multiple-well single-phase rate and pressure data provide more information on the
spatial variations of reservoir properties than single-well test data, especially on the
spatial connectivity between wells. Deriving the spatial constraints due to such data
is more complex in the sense that inverse solutions of flow equations are needed.
This inverse problem is tackled with the sequential self calibration (SSC) method: a
hybrid technique using an iterative approach coupled with the analytical calculation of
sensitivity coefficients. Results from a number of synthetic examples show flexibility,
efficiency and robustness of the SSC method.

� Integration of multiphase multiwell data presents unique challenges because it addi-
tionally requires additional knowledge of the sensitivity coefficients of fractional flow
rate to perturbations to permeability. A streamline-based method is applied for effi-
cient calculation of such sensitivity coefficients. This method adapts the concept of
decoupling multiple-dimensional full flow problem into multiple 1D problems along
streamlines. The sensitivity of fractional flow rate with respect to the reservoir prop-
erty change is then directly related to the sensitivity of time-of-flight of each individual
streamline and the sensitivity of pressure at cells along the streamline. The sensitiv-
ity of time-of-flight of each streamline can be obtained analytically assuming constant
streamline geometry. While the sensitivity of pressure can be obtained as part of
single phase flow simulation, which is computationally fast.
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Figure 1.2: Typical semilog plot of pressure drawdown from a well test.

1.6 Data-specific Approaches in this Monograph

1.6.1 Technique for Single-well Single-phase Well Test Data

A single-well pressure transient well test consists of imposing some flow rate and measuring
the consequent change in pressure. The change of pressure evolves over an initial near
wellbore effects dominant period, a middle radial flow period, and ultimately boundary
dominant or late-time period. A schematic illustration of a pressure drawdown is shown in
Figure 1.2. Chapter 3 will present the technique in greater detail.

Infinite acting central flow period is considered to bear most of the information regard-
ing the actual reservoir properties. Early time effects relate to the condition of the wellbore
and not the vast interwell region which is the main concern here. Moreover, there exist well
understood interpretive tools for late-time boundary effects such as faults and stratigraphic
barriers. The time limits, tmin and tmax, of infinite acting radial flow can be established by
examining the pressure transient data p(t) (see Figure 1.2). The derivative of pressure with
respect to time can be calculated within these time limits, (tmin, tmax). A time-dependent
permeability, ke(t), is linearly related to this derivative given estimates of fluid and reservoir
parameters such as viscosity, formation thickness, porosity, formation volume factor, and
single phase flow rate. The problem is to identify the volume informed by the time de-
pendent effective permeabilities. Using perturbation analysis, Oliver [138] investigated the
annular reservoir region that influences pressure derivative, and thus effective permeability
at a given time. Under the assumption of small variation of permeability, an analytical
weighting function was derived to specify the relative contribution of the permeability of
various regions to the estimation of effective permeability, ke(t). There is a smooth tran-
sition between the minimum and maximum times. This normalized weighting function is
remarkably robust with respect to departures from the assumptions used to derive it [194].
A scaling parameter, A, is introduced to correct for departures. This parameter is calibrated
by flow simulations. The time-dependent permeability ke(t) is modeled by a weighted power
average. The weighting function is the corrected version of Oliver’s weighting function and
the averaging power is based on calibration (see Figure 1.3). As a first approximation, the
averaging power most often leads to geometric averaging. This basic model was tested using
synthetic and real reservoir examples to establish its domain of applicability and limitations.
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1.6.2 Technique for Multiple-well Single-phase Data

The goal is to quantify the relatively coarse spatial information on petrophysical properties
contained in multiple-well single-phase production data. In case of a single well, inversion
to the spatial constraints was established through an analytical derivation and calibration
procedure. However, the situation is significantly more complex considering the irregular
distribution of multiple wells producing at different times and flow rates. A more elaborate
inversion scheme must be considered. The Sequential Self-Calibration (SSC) method is used
as a starting point to derive an inversion scheme for multiple-well single-phase data. The
SSC method is an iterative geostatistics-based method coupled with an optimization pro-
cedure developed for steady state single phase flow [194]. Chapter 4 presents the technique
in detail.

The SSC method is adapted to unsteady single-phase and also to multiphase flow (see
Figure 1.4). For single-phase case, multiple initial realizations of permeability fields are
created using the most suitable geostatistical techniques to honor all available static data.
Imposing time-dependent flow rates, numerical flow simulation is performed to establish
the “calculated” pressures from the model at all wells at all time. The sum of squared
differences between these pressures measures the mismatch of the current permeability
realization and one that would honor the production data. Modifications to the permeability
field are determined that allow the production data to be honored more closely. A number
of assumptions are required to calculate these “perturbations” to the permeability field.
However, recurring the entire procedure allows convergence in most cases. The optimal
perturbations are determined for a limited number of “master points” rather than every
grid cell in the field. This makes the method more computationally efficient and is consistent
with the relatively large scale nature of pressure transient data. An optimization problem
is solved to search for the optimal perturbation values at the master point locations These
optimal perturbation values are propagated through the entire field by kriging to obtain
a smooth perturbation field. A variogram appropriate to the geological setting of the
reservoir is used for the kriging. This smooth perturbation field is then added to the
previous permeability field to obtain an updated permeability field. Flow equations are
again solved using the updated permeability field with the same boundary and production
rate conditions and the entire procedure is repeated until convergence. This procedure can
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Figure 1.4: Flowchart of the Sequential Self-Calibration method.

be repeated as necessary to obtain multiple realizations.
Deterministic-type permeability distributions with large-scale heterogeneities and

stochastic-type permeability distributions are investigated. Large features are “captured”
by the multiple well pressure/rate data and appear in the final SSC realizations. The pres-
ence of small stochastic features may be detected but their precise location is not necessarily
established. The convergence properties of the method were also explored by using an in-
creasing number of wells and a longer historical production time. As expected, more wells
and longer duration measurements lead to more constrained results. The CPU efficiency
of the method was also explored and documented. In general, the method is significantly
more efficient than direct single-step inversion methods.

The approach was also tested in prediction mode. One set of reservoir models was
constructed without production data and another set was constructed with production
data. Integrating the production data led to significantly improved predictions of future
performance. The multiple-well single-phase data technique is now well established.

A spin-off of the SSC technique was the capability to obtain facies proportions. The
method proceeds as follows. Facies proportions are calibrated against permeability honoring
core, logs, seismic data. Master point method is used to compute coarse scale permeability
maps for multiple initial models. Coarse scale models are merged to local distributions of
facies proportions.

1.6.3 Technique for Multiple-well Multiphase Data

Integrating multiphase data such as fractional flow rate data (e.g., watercut or GOR) is
extremely challenging. This information carries valuable information on the spatial dis-
tribution of reservoir properties. The SSC method is extended to multiphase data with
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additional calculation of sensitivity coefficients of the rate of change in the fractional flow
at a well at a given time with respect to the perturbation of permeability. The calculation of
these sensitivity coefficients is essential in order to update permeability to honor production
data. The brute force method to get these sensitivity coefficients based on full flow simula-
tion is prohibitive due to CPU cost. A streamline-based simulator is used by perturbing the
permeability, recalculating the streamlines and fractional flow curves, and finally estimating
the sensitivity coefficients. This approach requires a single-phase flow simulation for each
permeability. Practical integration of multiphase production data requires an even faster
approach.

To achieve a significant improvement, the streamline locations are assumed not to be
changing for a permeability perturbation. Of course, the velocity along each streamline
changes hence the fractional flow response at each well changes. Moreover, the streamlines
are changed for each iteration of the SSC method. An analytical approach to calculate the
sensitivity coefficients was developed with this key assumption. Only one single-phase flow
simulation is required to calculate all sensitivity coefficients. Responses indicate that the
“fixed location” assumption is not limiting. In fact, the analytical approach relaxes two
assumptions of earlier approaches: (1) the permeability perturbations are now considered
jointly rather than one at a time, and (2) there is no need to choose a specific permeability
before calculating the sensitivity coefficients. However, the implementation to date is limited
to two-phase flow. Technique has been implemented to compute sensitivity of fractional flow
rate at wells and saturations at given locations with respect to the change of permeabilities
at selected master locations. A variety of deterministic and stochastic permeability fields
with different configurations of production or injection wells have been considered. These
techniques are discussed in detail in Chapter 5.

1.7 Characterization with Different Types of Spatial Data

Characterization of detailed 3D reservoir models entails working in an almost infinite di-
mensional space with a multitude of parameters to be estimated. There are various reservoir
model properties for which inversion techniques, mentioned earlier, are applied. In most
cases, these reservoir parameters include communication between strata and across faults
through transmissibility, distance to boundaries, effective flow capacities in the vicinity of
wells, productivity of wells, measures of interwell communication (absolute/relative kh),
coarse grid representation of kh, or φ, facies connectivity between wells, drainage vol-
umes around wells, facies proportions around/between wells, connectivity between wells
and connected surfaces,local measures of heterogeneity (e.g., variogram, covariance, mean
and variance of permeability and porosity), etc.

The problem of constructing reservoir models that honor the above spatial data is an
inverse problem. Essentially, solution of inverse problem means making inference of a phys-
ical system from real data. Issues regarding the solution algorithm of inverse problems may
be: dimensionality, non-uniqueness, consistency, robustness and so forth.

Characterizing any physical system such as a petroleum reservoir is an infinite dimen-
sional problem. Properties at an infinite number of points are to be identified. Solution of
this infinite dimensional problem is out of the question. The problem is thus redefined in a
finite-dimensional setup.
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There are many models in the solution space (model space) that can match the system
performance. Non-uniqueness may arise because of attempting to derive a large number of
essentially continuous parameters from a limited number of responses. Also, identifiability
of the physics, mechanisms or even procedures may lead to a loss of uniqueness. For
instance, one may often have to correlate some calculated or estimated parameters like
acoustic impedance from seismic with other variables such as porosity, permeability, and
fluid saturations affecting these measurements. The choice of variables may lead to non-
uniqueness.

Reservoir characterization, like most inverse problems, entails numerous data of different
types and information content. There is often some inconsistency due to different levels of
accuracy within the same data type or different types of data. Also, some data may be in
the time domain while some in the space domain.

Moreover, the scales or volumetric supports of various data may lead to inconsistencies.
For example, well logs have a different volumetric support than well test data or core plug
data. Inconsistency may also arise through application of different methods.

Many of these issues are still to be resolved to a satisfactory level in dynamic data
integration. This is one reason that this field is an active area of research. Most methods
attempt to reduce the non-uniqueness. However, it is difficult to agree on a suitable measure
of such reduction. Consistency is a difficult issue especially in the presence of sparse data
and many degrees of freedom. This monograph explores the issue of robustness to some
extent. Due to its infinite dimensionality, it is not possible to completely deal with the
robustness issue. At the end, one should be reminded that there is a need to explore more
efficient reservoir characterization techniques with dynamic data. This monograph is only
one step towards the goal of full data integration and uncertainty quantification.





Chapter 2

Literature Review

This is not an exhaustive documentation of the literature on dynamic data integration.
The authors have restricted their literature review to relevant studies documented in public
domain up to mid 1998. Notwithstanding the attempt to be thorough, there is always some
possibility of missing valuable research endeavors.

2.1 Brief Description

Production data integration is an inverse problem, that is, a parameter estimation problem.
The dynamic production data contain important information about petrophysical properties
(e.g. permeability, porosity). Any reliable reservoir characterization study should account
for these dynamic data. The objective here is to generate reservoir models that reproduce
these dynamic together with static data and measures of spatial continuity.

The classification of the techniques presented in this review is subjective. The chronology
of the methods, their distinctness and salient aspects were the criteria for the classification.
The methods overlap, which would be true of any possible classification. A common ground
of almost all the approaches is the notion of formulating a misfit or mismatch function on
which some minimization algorithm is imposed. Furthermore, in many formulations, the
problem is ill-posed particularly because of the non-uniqueness of the solution space (model
space) and the lack of continuous dependence. A natural consequence in many of these
techniques is an exertion to make the problem well-posed, or in mathematical parlance,
regularized.

A thorough review of the subject of parameter identification in reservoir simulations is
also given by, for instance, Jacquard and Jain [102], Gavalas et al. [71], Watson et al. [186],
Feitosa et al. [69, 70], or Oliver [141]; and by Yeh [203] and Carrera and Neuman [25] in
groundwater hydrology.

2.1.1 Classical Inversion Techniques

Early approaches to the integration of pressure transient data in geological modeling used
inverse techniques for parameter identification or history matching. Probably the most
naive and primitive approach to tackle this kind of problem is the trial and error method.
Because of its simplicity in formulation, trial and error methods are still widely used for

15
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history matching. However, a notable limitation of such methods is the inefficiency, i.e.,
enormous professional and computation time.

Automatic history matching addresses this inverse problem. The objective of history
matching is to estimate reservoir petrophysical parameters from pressure and/or flowrate
data [5, 15, 16, 28, 31, 32, 41, 65, 66, 78, 103, 147, 169, 171]. Most methods are based on the
premise that the best spatial distribution of reservoir parameters minimizes the difference
between observed and calculated pressure data at well locations. These techniques seek
direct spatial distributions of reservoir parameters that honor the pressure measurements
through pressure response simulation.

Most automatic history matching techniques are based on gradient method or streamline
based methods [65]. One of the important aspects of the gradient based history matching
techniques is computation of the gradients or sensitivity coefficients. Schemes like perturba-
tion methods, rigorous finite differencing of the physical flow equations [5, 15], convolution
integral method [28, 102], optimal control theory [31, 32, 185, 186], have been utilized. Up
to 1972, most of the work done had been based on perturbation methods. In perturbation-
based methods, the gradients are calculated by first making an initial simulator base run
and then repeating the simulator run each time after perturbing each parameter to be es-
timated. In the finite difference based approaches, the sensitivity coefficients are derived
by setting up new equations from the original partial differential equations describing the
physical flow system; the new set of equations are then finite differenced. A close alterna-
tive approach to this is to derive the gradients directly from the finite-difference form of the
physical flow equations. In convolution integral methods, a convolutional method is applied
for computing the sensitivity coefficients of the linear system relating the difference between
the calculated and the observed parameters. Optimal control theory based methods use the
physical system of equations as equality constraints for the minimization problem of the
misfit function with the unknown parameters serving as control variables.

2.1.2 Generalized Pulse-Spectrum Techniques and Other Regularization
Based Techniques

The inverse problem is often ill-posed partly due to the lack of continuous dependence, that
is, small variation in data may result in unbounded changes in the model estimates, and
also to the non-uniqueness of the solution space, which means, more than one estimate can
satisfy the same set of observed data [165, 201, 203]. To tackle the stability and efficiency
problem, a versatile technique was devised by Tsien and Chen [179]. Since its inception
in 1974, the technique has been subsequently modified and improved further by Chen and
his colleagues [33, 34, 35, 36, 37, 38, 83, 127, 128, 129, 170]. Essentially the Generalized
Pulse-Spectrum Technique (GPST) is a combination of a Newton-like iterative algorithm
and the Tikhonov regularization method. The capability of GPST has been demonstrated
in performing history matching for one-dimensional single-phase reservoir simulators in
[34], for two-dimensional single-phase simulators in [127] and for two-dimensional two-phase
models in [170]. Hierarchical multigrid approach, in which the estimation is performed on
successively finer grids until convergence is reached, is applied to improve the efficiency of
GPST further [33, 38]. Landa et al. [120] used a similar technique to integrate well test,
production, shut-in pressure, log, core, and geological data.
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Another promising numerical method based on regularization techniques proposed by
Kravaris and Seinfeld [115, 116, 117] appears particularly suitable for two-dimensional
single-phase simulator models [124] and for two-phase models [125]. These methods ap-
ply Tikhonov regularization method first and then the well-posed problem is solved by the
partial conjugate gradient method of Nazareth [135]. Cubic spline function is used in these
methods to approximate the unknown parameters. Makhlouf et al. [131] extended this nu-
merical algorithm to estimate absolute permeability in multiphase, multilayered petroleum
reservoirs based on noisy observed data, such as pressure, water cut, gas-oil ratio and rates
of liquid and gas production from individual layers.

Both these groups of techniques do not require any a priori information on the param-
eters to be estimated.

2.1.3 Bayesian and MultiGaussian Approaches with A Priori Informa-
tion

A Bayesian estimation framework was proposed by Gavalas et al. in 1976 [71] for reservoir
modeling using dynamic production data. The underlying theory behind this technique
is to reduce the statistical uncertainty by using additional prior information, for instance
autocorrelation and mean values of permeability and porosity. Shah et al. [165] showed
that if reliable prior information particularly about permeability or porosity is available,
Bayesian estimation will improve the variance of the estimation error. Similar Bayesian
approach was used much later by the workers at the Norwegian University of Science and
Technology to integrate historical production data [89, 177]. The problem of integrating
production data is formulated in a lower dimensional parameter space where, for the sake
of mathematical tractability, the parameters are often assumed multivariate Gaussian.

Neuman and Yakowitz [136] used an extended Bayesian approach to estimate actual
values of transmissivity in two dimensional study and covariance functions. Clifton and
Neuman [40] demonstrated the importance of jointly inverting permeability and pressure
data through conditional simulation. They found that the conditioning effect of the pressure
data in a full inversion is much greater than that of kriging.

Cooley proposed a method to incorporate prior information having unknown reliability
into the nonlinear regression model by adding a penalty function [42]. The resulting com-
posite objective function consists of two terms: the weighted sum of squared errors in the
pressure and the sum of weighted errors in the parameters. Dagan [44] used an a priori
selected analytical technique and Gaussian conditional mean for the inverse problem.

Maximum likelihood methods [24, 25, 26, 27, 68] have long been used for parameter es-
timation with dynamic data. This is a general non-linear technique that estimates reservoir
parameters using prior estimates along with transient or steady state pressure data. Early
development of this method is presented in Carrera and Neuman [25, 26] and Feinerman
et al. [68]. Parameter estimation is performed using the maximum likelihood theory, in-
corporating the prior information into the likelihood function. The nonlinear flow equation
is solved by a numerical method. Both steady-state and transient pressure data can be
integrated into the model. However, this method is computationally intensive.

Oliver [141] used Gauss-Newton method to obtain the maximum a posteriori estimate
(mean and covariance) that minimizes the objective function derived directly from the a
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posteriori probability density function. Multiwell pressure data and prior information are
honored in this technique, however, at each iteration of Gauss-Newton method, the for-
ward problem is solved using a reservoir simulator. Chu et al. [39] presented an efficient
method of computing sensitivity coefficients required in the approach. This method yields
a smoothed version of the true distribution. Conditional realizations with given variability
are constructed using Cholesky decomposition of the covariance matrix estimated by as-
suming that permeability distribution is Gaussian and pressure data is a linear function of
permeability. Reparameterization based on spectral decomposition reduces the number of
the parameters to be estimated by the Gauss-Newton procedure [39, 141]. More recently, a
reparameterization technique based on subspace method was presented to further improve
the computational efficiency in the Gauss-Newton procedure by Reynolds et al. [155]. He et
al. [87] extended this method for a three dimensional reservoir model. In another effort, the
same authors [86] developed a multistep procedure to generate reservoir models conditioned
to well test data. The ensemble realizations by this method provides a good empirical ap-
proximation to the posteriori probability density function for the reservoir model, which
can be used for Monte Carlo inference. Oliver et al. [144] concluded that the frequency
of occurrence of parameter values within an interval of values must be approximately pro-
portional to the conditional probability density function for the parameter. Consecutive
sampling from a small neighborhood will cause artifact. Abacioglu et al. [1] used a similar
technique to a field example in estimation of heterogeneous anisotropic permeability fields
from multiwell interference.

Wu et al. [196] developed a discrete adjoint method for generating sensitivity coefficients
related to two-phase flow production data. The method directly generates the sensitivity
of the calculated data to the model parameters. Using these sensitivity coefficients, an
efficient Gauss-Newton algorithm is applied to generate maximum a posteriori estimates
and realizations of the rock property fields.

Cunha et al. [43, 143] used a hybrid Markov Chain Monte-Carlo algorithm to generate
realizations of permeability conditioned to prior mean, variance and multiwell pressure data.
These realizations represent samples from the correct a posteriori probability distribution.

Ates and Kelkar [6] devised a two-stage multiphase production data inversion technique.
The method is based on an analytical sensitivity equations for two-phase flow which can
be coupled to both streamline and finite-difference simulators. The most probable models
were constructed using dual-loop technique, which combines Gauss-Newton and Conjugate
Gradient algorithms.

Rogerro [156] used a Bayesian inversion technique and an efficient optimization algo-
rithm to integrate multiple well historical data and prior geostatistical information. The
procedure permits direct selection of particular constrained model realization within a con-
fidence level of the parameter space.

2.1.4 Zonation Methods

All numerical reservoir characterization models, irrespective of static or dynamic nature,
should fall into this category inasmuch as the original problem is infinite-dimensional but
is modeled by a finite number of parameters. Notwithstanding this fact, the authors have
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grouped the subsequent methods in this category because of the utility and emphasis of the
zonation approach.

Some of the early methods [25, 40, 65, 102, 136] have already been grouped as the
classical techniques for a historical perspective. While the zonation method is effective in
reducing the number of unknowns, sufficient a priori information is not usually available to
enable specification of the zones on any physical basis. Zonation methods are active research
area. Amongst the newer methods are pilot point method, sequential self-calibrated method,
and others.

Pilot point method [50, 122, 154] is a zonation method that starts by simulating a con-
ditional transmissivity field. The generated field is then modified by adding additional or
fictional transmissivity data at some selected locations, termed pilot points, to improve
the calibration of the pressure data. Adjoint sensitivity analysis is used to determine the
locations where additional transmissivity data should be included [121]. The additional
transmissivity data at the selected pilot points are treated as local data, a new conditional
realization of transmissivity is then generated, and, the flow model is run again. The it-
eration of adding pilot points is continued until the least-squared error criterion is met or
the addition of more pilot points does not improve the calibration. This method is, how-
ever, computationally inefficient and cannot efficiently handle pressure data from multiple
hydraulic tests at different times. Fasanino et al. [67] applied this model in inverse model-
ing of a gas reservoir. Bissell et al. [14] evaluated pilot point method it to an alternative
gradzone method, where groups of grid cells in the model are modified.

Sequential self-calibrated method [22, 73] combines geostatistical and optimization tech-
niques. A geostatistical technique is used to generate a reservoir parameter model condi-
tioned to local measurements of parameters. Initial model is modified to minimize the misfit
function through an optimization procedure. In order to reduce the parameter dimension,
the optimization is parameterized as a function of the perturbations of permeability at a few
selected locations, called master points. The perturbation values at the master locations
are determined from the optimization procedure by minimizing the squared difference of the
simulated and observed pressures. The resulting perturbations are propagated throughout
the entire reservoir domain by kriging to obtain the perturbation field that is subsequently
added to the initial field. The flow equation is linearized to obtain fast solution in the
optimization process. Alternatively, an iterative process is used in order to avoid the errors
in the linear approximation of the flow equation, that is the modified reservoir model is in-
put again into the reservoir simulator and the squared difference of simulated and observed
pressures is reevaluated until the actual solution of pressure from the numerical reservoir
simulator is close to the observed data. This approach accounts for measurement errors
in the data and the uncertainty in flow boundary conditions. It is computationally effi-
cient. Promising results were obtained by using this approach in groundwater hydrology
[188, 194, 195, 204].

Blanc et al. [17] presented a solution to the problem of constraining geostatistical models
by well test pressure data similar to the pilot point method or sequential self-calibrated
method. In this method, a well test simulator is coupled with a nonlinear constrained
optimization program for an inversion loop so that a set of optimal facies or rock-type
properties and well-skin that give best fit between the simulated and measured pressure
data are obtained. Sensitivity coefficients are computed numerically, and in each iteration,
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full numerical solution of well test pressures are computed by a well test simulator. The
method is thus computationally inefficient.

Xue and Datta-Gupta [198] developed a two stage approach for a structure preserving
inversion technique similar to pilot-point technique but incorporates the prior information
in a different way. The covariance matrix is embedded in the parameterization of the
permeability field.

2.1.5 Cokriging Based Methods

Kitanidis and his colleagues [92, 114] applied cokriging to simulate transmissivity and pres-
sure fields using covariance or cross-covariance models based on field measurements of trans-
missivity and pressure. The cross-covariance between transmissivity and pressure is devel-
oped through linearization of the single phase steady state flow equation. Parameters in
the covariance and cross-variance are estimated from the measured data and the linearized
flow equation using a maximum likelihood method. Realizations are then constructed us-
ing Cholesky decomposition of the covariance matrix, which is computationally efficient.
However, the steady-state pressure data are reproduced only under the assumptions that
the relationship between transmissivity and pressure is linear which is valid only for small
variance of transmissivity, the permeability distribution is Gaussian, and flow is uniform.

In linearized semi-analytical cokriging method [160, 161], a linearized form of the sin-
gle phase steady-state flow equation is used to develop analytical expressions of cross-
covariances of permeability and pressure assuming uniform flow and infinite domain. Tran-
sient pressure is accounted for with the linearity assumption between change of pressure
and time.

Harvey and Gorelick [82] presented a cokriging method, combining numerical simulation
of flow and tracer transport with a linear estimation, to construct permeability field that
sequentially accounts for permeability, pressure and tracer arrival times. Integrating tracer
arrival time data improves the accuracy of the permeability estimation. Tracer arrival time
quantiles are found to be robust indicators of flow paths and flow barriers.

Yeh et al. [202] applied a similar but iterative technique to account for the nonlinear
relationship between permeability and pressure in the estimation through successive lin-
ear approximation. It first estimates a permeability field by cokriging from the available
permeability and steady-state pressure data. The flow equation is then solved numerically
to obtain a pressure field, which is computationally intensive. The covariance and cross-
covariance of permeability and pressure are then updated and a new permeability field can
be obtained by again cokriging using the updated covariance and cross-covariance. This
process is continued until the variance of estimated permeability stabilizes.

In another cokriging based method, fast Fourier transform method [79, 80] is applied
to the linearized steady-state flow equation. Transmissivity and pressure perturbations are
represented in the spectral domain as Fourier integrals in two dimension. The covariance
and cross-covariance are represented as functions of the spectral and cross-spectral density.
Transmissivity realizations conditioned to the pressure data are constructed by adding the
difference between the unconditional simulation and kriged values of the unconditional
simulation to the kriged values using the field data [51, 108]. This method is computationally
fast when there are a large number of pressure data.
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Huang et al. [99, 100] integrated time-lapse seismic and production data in reservoir
characterization. The uncertainty was quantified by the statistics on reservoir-scale 3D
acoustic impedance blocks. Using collocated cokriging the impedances were transformed
into reservoir parameter through a petrophysical relationship while respecting the well in-
formation. The results are finally transferred from the time domain to a spatial one for flow
simulation.

Hu et al. [95] proposed a new kriging algorithm to estimate lithofacies proportions in
well test areas of investigation. Method consists in kriging jointly the proportions of all
lithofacies in the area through a weighted power averaging of lithofacies permeabilities. For
multiple well tests, an iterative process is used to account for their interaction.

Srinivasan and Journel [166] interpreted well test derived effective permeability as linear
average of small scale permeability values indexed with a power. A kriging on the power
transformed permeability fields followed by an inverse power transform allows generating
estimated permeability fields over the drainage area.

2.1.6 Simulated Annealing Based Techniques

Ouenes and his colleagues [145, 146, 167] employed simulating annealing for automatic
history matching. Petrophysical and reservoir engineering parameters are estimated through
an automatic and multiwell history matching using simulated annealing method. A least-
square error objective function defined by the oil, gas, and water productions at each well is
minimized by the simulated annealing method. At each iteration in the simulated annealing
method, a limited number of reservoir parameters are adjusted. The impact of these new
parameters on the objective function is evaluated by forward reservoir simulation, which is
too costly for routine application for large number of parameters and iteration steps used
in this approach.

In another simulated annealing approach proposed by Tauzin [172], the objective func-
tion is evaluated analytically which improves the computational time. An analytical in-
fluence function is defined to approximate the perturbation on the pressure transient due
to a local heterogeneity. This influence function is derived from the analytical solution of
transient pressure in an infinite homogeneous reservoir containing a single circular discon-
tinuity from Rosa and Horne [159]. This approximation is usually sufficiently accurate to
predict the direction and the order of magnitude of the pressure perturbation caused by the
permeability perturbation.

Tracer data reveal important information on the interwell connectivity. Datta-Gupta
et al. [48, 49] sequentially applied the simulated annealing method to account for both
pressure and tracer data in the construction of reservoir permeability model. A semi-
analytical transient time algorithm was used for fast calculation of tracer travel time in
the simulated annealing [46]. Vasco et al. [183] first attempted to integrate multiphase
production history data using 3D multiphase semi-analytical streamline model based on
simulated annealing technique.

Maroongroge et al. [132] investigated the effectiveness of vertical tracer profiling for
determining reservoir zonation. Tracer history is used to condition the permeability model
using a simulating annealing method and a least square history matching method. Condi-
tioning to tracer history substantially constrains the model and it is particularly important
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when the horizontal variogram is unknown. The use of vertical tracer profiling can substan-
tially improve the results compared to the case when the integrated breakthrough curve is
used. However, this would be quite difficult and costly to implement in the field.

2.1.7 Inversion Techniques for Statistical Parameters or Constraints

Most modern indirect inversion techniques fall into this category. Production data can
be used to estimate statistical parameters, such as the mean, covariance, or the fractal
dimension that describe the spatial distribution of reservoir properties. These parameters
are subsequently used to characterize the reservoir.

These indirect techniques seek to construct geological models that honor critical features
interpreted from the production data. Some relationship is first established between the
production data and some reservoir parameters or their spatial variation. This relationship
then serves as a constraint in the construction of the geological model so that the production
data are indirectly integrated into the reservoir model.

The first step is to analyze transient production data and infer spatial heterogeneity
features of the underlying reservoir model. These heterogeneity features may be in the
forms of general information on the degree of heterogeneity, anisotropy and zonation of the
reservoir properties; the presence of internal or external reservoir boundaries such as faults,
lithofacies changes, water-oil contacts, stratigraphic pinchouts; the presence of high flow
channels or low permeable zones in an area and the distance to these zones; in multiple
well systems, water breakthrough time and recovery efficiencies inform connectivity between
wells; effective transmissivity and facies proportions in the wellbore vicinity, etc.

Chang et al. [30] give an example of the connection between different engineering data
including well test data, production data, production performance data, hydrogeochemical
data and the geological model. Other references include [7, 8, 20, 85, 88, 93, 126, 130, 184].

Yadavalli et al [199, 200] used pressure transient data from single or multiple sets of well
tests to estimate permeability variograms, and they were able to obtain reliable horizontal
variogram models in cases where no information is available on the short scale structure of
the variogram. Chang and Yortsos [29] and Beier [12, 148] showed that pressure transient
field data could indicate fractal reservoir structure and the parameters of the fractal model.
Grindrod and Impey [76, 77] also estimated fractal geometry parameters from permeability
and pressure data using a maximum likelihood method.

Once the statistical parameters are estimated, they are used in geostatistical techniques
to construct reservoir models. The contribution of production data lies in the improvement
in the estimation of statistical parameters describing the reservoir heterogeneity. In some
cases, such as when the reservoir parameters are Gaussian, and the relationship between
the reservoir parameter and pressure data are linear, the constructed geostatistical reservoir
model may also directly honor the pressure data.

Another approach is to infer parameters of the heterogeneous reservoir model from the
production data and then constrain the reservoir models to those inferred parameters.

Effective permeability within the drainage area of the well obtained from well test data
[94, 162] does not resolve local details of the spatial distribution of permeability. However,
well-derived effective permeability can be regarded as the average value of the heterogeneous
permeability values in the vicinity of the test well [2, 138]. Deutsch [55, 57, 58, 60, 61]
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presented an approach, based on simulated annealing, that integrates well test-derived
effective permeabilities in stochastic reservoir models. The volume and type of averaging
formed by the well test are first calibrated by forward simulating the well test on a number
of stochastic reservoir models that are consistent with the geological interpretation, core,
well log, and seismic data. The effective permeability from the well-test is assumed to be the
power average of the heterogeneous permeability within the influence volume of the well test
[2]. The optimal volume and power parameter for the averaging process are obtained from
the calibration as suggested by Alabert [2]. Stochastic reservoir models are then constructed
with simulated annealing to honor the well-derived average permeabilities. Results showed
the improvement in characterizing permeability heterogeneity and waterflooding predictions
when the effective permeabilities are constrained in the model.

A similar approach was presented by Sagar et al. [163] but using a geometric average
of permeability values within the influence region. The approach of Deutsch was extended
by Tauzin [172] to directly integrate the pressure transient data using a simple analytical
algorithm based on Rosa and Horne [158, 159] to quickly evaluate the objective function
due to the single perturbation of permeability.

Hird et al. [90, 91] used reservoir connectivity parameters as indirect well-performance
constraints in the conditional simulation of a stochastic reservoir model. Reservoir connec-
tivity parameter was defined by a functional relationship between fractional area connected
and permeability percentile cutoffs. This connectivity parameter is found to be strongly
correlated to the well performance, such as secondary recovery efficiency, drainable hydro-
carbon pore volume, floodable hydrocarbon pore volume and also water breakthrough time.
Based on a strong correlation between the spatial reservoir properties and the reservoir per-
formance, they suggested use of the connectivity parameter to constrain the reservoir model
using simulated annealing. Alabert and Modot [4] also defined connectivity of a permeabil-
ity field in terms of the connected pore volume.

Holden et al. [93] presented an approach to indirectly account for well test data to
improve the simulation of lithofacies and petrophysics under the framework of two-stage
stochastic simulation as suggested by Haldorsen [45, 81]. Using an analytical tool, the pres-
sure data is used to estimate pressure support and then the shortest distance from the well
to a possible channel boundary, connection between two wells by a high permeable zone and
channel geometry. The channel structure is then simulated using these interpretations with
a marked point process model. Average permeability in the part of the channel intersected
by the well is estimated from the well test data. The permeability field was then generated
together with the core/log data using stochastic Gaussian model. Alabert and Massonnat
[3] used well test data to infer information on channels and lobe dimensions in addition to
average permeability.

Britto and Grader [19] applied transient pressure data to identify local impermeable
regions or high-flow channels. Vashist et al. [184] presented a technique for defining reser-
voir facies which incorporates the geological features of deposition and diagenesis with the
dynamic flow capacity (kh) of the reservoir. The ranges of permeability for different reser-
voir facies are determined through multiple regression analysis based on their dynamic flow
capacity (kh) data in tested wells.

Benkendorfer et al. [13] presented a different approach to indirectly integrate production
data using a two-step approach. That is, the permeability values estimated from well-test
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data are regarded as the sum of a core-based permeability and a large-scale permeability.
The core-based permeability and the large scale permeability are constructed separately.
The final model is the sum of the two models. This two-step approach is applicable when
a significant difference exists between core-based permeability and production-scale perme-
ability.

Feitosa et al. [69, 70] presented a new inversion solution, called Inverse Solution Al-
gorithm (ISA) based on Oliver’s perturbation solution [138]. Based on the pressure data
from drawdown and buildup tests, the absolute permeability is estimated as a function of
distance from the well [70, 139], or a function of both distance and angle from the well [69].

Huang and Kelkar [98] presented a procedure for integrating three dimensional seismic
data and production data to develop a detailed reservoir description. Impedance distribu-
tion is constructed by the inversion of the seismic data, then porosity field, consistent with
the impedance data, is simulated, and finally permeability field, consistent with porosity
and dynamic well test data, is constructed. The initial permeability field is then per-
turbed randomly until the simulated well test data match the measured data. Forward
simulator is used to calculate the pressure or flowrate response after each perturbation of
permeability, thus it is computationally inefficient. To improve the efficiency, for a highly
correlated porosity and permeability, the bound can be narrowed. The same authors have
in another paper [97] discussed dynamic data integration in frequency domain. The spatial
relationship-variogram is represented by power spectra and self-correlation in the frequency
domain. Huang et al. [96] also explore the impact of dynamic data integration in the
uncertainty of prediction of the multiphase systems.

Deng [52] and Deng and Horne [53] presented an analytical approach to interpret pres-
sure and tracer data from multiple wells simultaneously to characterize the two dimensional
permeability distribution in heterogeneous reservoir. The correlation between permeability
and dispersivity is sought, and the convection-dispersion equation and diffusion equation to
a system of first-order equations in permeability are reformulated. The system of equations
is then solved to yield the permeability distribution for appropriate boundary conditions.

Several other authors have examined the sensitivity of transient pressure response to
the spatial distribution of permeabilities, such as McElwee [134] and Sykes et al. [168]. The
pressure response for a multirate test was found more sensitive to reservoir heterogeneities
than a single flowrate test [158]. The effectiveness of the data in estimating local-scale
permeability can be measured by its spatial resolution [46, 140, 142]. The higher the reso-
lution of a data to a given parameter, the more information this data carries on the spatial
variation of the parameter. Datta-Gupta et al. [46] used the concept of resolution matrix to
give information on the spatial averaging involved in the parameter estimation due to lim-
ited sampling, as well as quantitatively evaluate the relative worth of additional data. The
resolution of pressure data in constraining local permeability variations in heterogeneous
media is limited. Oliver [142] showed that interference tests are generally more effective
than single-well tests at improving the resolution. On the other hand, interwell tracer data
can be very sensitive to local heterogeneities [47, 53]. Also, both transient pressure data
and tracer data appear to resolve flow barriers better than flow channels [46].

Rahon et al. [151, 152, 153] developed geological shape inversion technique with im-
proved gradient computation. The devised method is capable of identifying the limits of the
reservoir, position of the faults, thickness and dimensions of channels. Geological shapes
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are modeled by triangulation as a 2D or 3D surface. A finite element structure is associated
to each object and the Cartesian coordinates of the nodes in this triangulation are matched
in the inversion process.

Jensen and Kelkar [105, 106] employed cross-correlation between pairs of wells produc-
tion to determine the inter-well relationships, preferential flow directions and flow barriers.
They incorporated Wavelet transformation tools in reservoir characterization technique in
the form of a better search neighborhood definition. In an earlier paper [104] by the same
authors, exploratory data analysis of production data was performed. A local and global
analysis along both the temporal and spatial axis were considered.

Rogerro and Hu [157] used gradual deformation method to continuously modify geosta-
tistical model while respecting its global mean and variogram. This method was coupled
with an efficient optimization algorithm. Different strategies are used to obtain optimal effi-
ciency by selecting the number of deformation parameters in the model and the optimization
sequences.

Landa and Horne [119] devised a procedure to integrate well test data, reservoir perfor-
mance history and 4D seismic information into reservoir characterization. Both cell-based
and object-based modeling were formulated. Sensitivity coefficients were calculated with a
multiphase extension of the Jacobian method. 4D seismic information was considered to be
in the form of maps of change of saturation in the reservoir. The value of data integration
was evaluated with the variance analysis.

Indirect methods provide flexibility to account for production data in the construction
of reservoir models with less computational effort than full inversion. However, the success
of these techniques in constraining reservoir models essentially relies on the quality of the
interpretation of production data in retaining reservoir heterogeneous features.





Chapter 3

Single Well - Single Phase

This chapter provides the details of an approach to integrate dynamic production and well
test data in reservoir model building. The technique discussed builds on the works of Wen
and his colleagues [190]. First, a spatial representation of permeability is interpreted from
the well test data. Single-well pressure responses are interpreted as a set of spatially varying
average permeabilities. These parameters are utilized directly as input constraints along
with other data in reservoir model building.

Within the radial flow domain, spatially varying permeability can be derived as weighted
power averages of permeability values within a dimensionless time-dependent annular reser-
voir volume around the well. Two parameters represent the volume-of-averaging and the
power average exponent, which can be derived by a simple calibration process.

A number of synthetic examples of varying grid size, anisotropy, permeability hetero-
geneity, dimensionality, and lithofacies architecture have been tested to develop a sense
of the limitations and the range of applicability of the method. The methodology is also
demonstrated on two segments from a real clastic reservoir.

3.1 Problem Statement

Single well pressure transient test data are common source of engineering data. The available
data consist of time dependent pressure p(t) and flow rate q(t) observed at the testing well.
Traditionally, single well tests are designed to analyze well performance and determine a
single effective permeability of the drainage region around the well [94, 162].

With the introduction of high accuracy and high resolution pressure gauges, well tests
are also used to evaluate reservoir heterogeneity. The pressure derivatives, coupled with
non-linear regression, are used as interpretive tools. Time-dependent changes in pressure
provide information on the spatial distribution of reservoir petrophysical properties. The
analysis of pressure time derivative may identify some important heterogeneities in the
reservoir, such as faults, stratigraphic pinch-outs, reservoir boundaries, facies boundaries,
layered systems, fractured reservoirs, and other barriers. Since pressure is observed at only
a single point, that is, at the testing well, a single well test can only provide information on
the radial distribution of reservoir properties, no directional information can be retrieved.

27
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Figure 3.1 summarizes the method for obtaining spatial representation of permeability
from single-well pressure response. The procedure is divided into three phases: interpreta-
tion, calibration, and model-building.

The interpretation phase is based on a radial flow analysis as described in Section 3.4.
This phase provides interpretation of the flow regime and the overall effective permeability.
Second phase is the calibration phase described in Section 3.5. Two parameters, A and
ω, defining the volume of averaging and the exponent of the power average, respectively,
are obtained by a simple calibration process with the step-by-step procedure presented in
this section. A and ω are determined from the pressure data and a prior approximate per-
meability description, for example, a descriptive geologic model. For practical applications
in which no prior description of permeability is known, these optimal parameters may be
calibrated from forward simulation with a small number (<10) of permeability realizations
with the same heterogeneous features observed in the field.

Limitations and range of applicability of the method are addressed in Section 3.6, which
discusses the dependence on grid size, dimensionality, boundary effects, lithofacies architec-
ture, anisotropy, and flow regime. Guidelines are established to determine the time interval
within which the simulated well test pressure data are reliable for analysis. Presented in this
section are realistic synthetic reservoir models representing a heterogeneous single facies, a
multi-facies carbonate, a high net-to-gross braided stream deposit, and a low net-to-gross
fluvial reservoir.

Section 3.7 presents an example analysis for two segments from a real near-shore reser-
voir. The resulting spatial representation parameter set (A, ω) and the dimensionless time-
dependent effective permeability are presented.

3.2 Background

This section discusses the basic mathematics involved in pressure transient analyses and
the interpretations to be made from such analyses. The mathematical equation describing
pressure transmission in a porous medium filled by slightly compressible fluid in cylindrical
coordinates is given by [94]:

∂2p

∂r2
+

1
r

∂p

∂r
=

φμc

k

∂p

∂t
(3.1)

where p is pressure, r is the radial distance from the wellbore, φ is the porosity, μ is
the viscosity, c is the fluid compressibility, k is the absolute permeability, and t is time.
Assumptions inherent in this equation are:

� Darcy’s law is applicable and the flow is single phase.

� Flow is radial into the well penetrated over the entire vertical thickness of the forma-
tion.

� Formation is homogeneous and isotropic with constant porosity and constant perme-
ability.

� Fluid has a small and constant compressibility and a constant viscosity.
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Figure 3.1: Flowchart of overall procedure of integrating well test pressure data in reservoir mod-
eling.



30 CHAPTER 3. SINGLE WELL - SINGLE PHASE

� Pressure gradients are small and gravity and thermal effects are negligible.

For an infinite reservoir and a line source well with a constant flow rate q, the pressure
solution to this equation may be written as:

p(r, t) = pi − qμ

2πkh

{
−1

2
Ei

(
−φμcr2

4kt

)}
(3.2)

where Ei is the exponential integral function given by,

− Ei(−x) =
∫ ∞

x

e−u

u
du (3.3)

The exponential integral function can be well approximated by a log function for all but
early times,

p(r, t) = pi − qμ

4πkh

[
ln

kt

φμcr2
+ 0.80907

]
(3.4)

where:
k = permeability (md)
h = thickness (ft)
pi= initial reservoir pressure (psi)
p(r, t) = pressure at radial distance r (ft) and time t (hours).
q = flow rate (STB/d)
φ = porosity (pore vol/bulk vol)
c = fluid compressibility (1/psi)
μ = viscosity (cp)
In many situations, dimensionless variables are used to simplify the notation and to

provide solutions that are independent of any particular unit system. The dimensionless
pressure pD is defined in oilfield units as:

pD =
kh

141.2qBμ
(pi − pwf) (3.5)

where pwf is the well flowing pressure and B is the formation volume factor (res vol/std
vol).

The dimensionless time tD is defined in oilfield units as:

tD =
0.000264kt

φμctr2
w

(3.6)

where ct is the total compressibility (1/psi) and rw is the wellbore radius (ft).
The dimensionless radius rD is defined as:

rD =
r

rw
(3.7)

Reservoir parameters such as wellbore skin effect, wellbore storage, and effective perme-
ability can be determined from well test analyses, provided the well test data, that is, flow
rate q and corresponding pressure transient at the well p(rw, t), and the estimates for μ,
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Figure 3.2: A typical semilog plot of pressure drawdown from a well test.

h, φ, and c are available. One widely used well test analysis is the Miller-Dyes-Hutchinson
(MDH) method. In this method, pressure drawdown is plotted against the logarithm of time
(see Figure 3.2). A straight line is then fitted to the pressure drawdown data during the
infinite acting transient radial flow portion. The early-time effects are due to wellbore stor-
age and skin effect, whereas the late-time effects are attributed to the reservoir boundaries.
The slope of the semilog straight line m is linearly related to the effective permeability, ke,
by the following equation.

ke = 162.6
qBμ

|m|h (3.8)

Traditionally, only a single effective permeability ke is estimated. This effective or
apparent permeability is considered to be representative of the reservoir permeability within
the radius of investigation of the test, or the annular reservoir volume informed by the
infinite acting radial flow period defined by r(tmin) and r(tmax), with r(t) being the radius
of investigation at time t.

In practice, the time interval that the pressure response resembles infinite-acting radial
flow (tmin and tmax) can be easily determined. However, evaluating the radius of inves-
tigation corresponding to a given time of test, r(t), is not straightforward. The classical
approaches proposed by van Poollen [182], Johnson [107], and Lee [123] give rise to similar
expressions which can be written as:

r(t) = A

√
ket

φμct
(3.9)

or in dimensionless units as:
rD(t) = A

√
tD (3.10)

where A, a constant, varies from 0.023 to 0.07 for oilfield units depending on the definition
chosen for r(t). Equation 3.9 assumes that the permeability field near the well is constant
at ke and independent of time.

For a heterogeneous permeability field, the radius of investigation is ill-defined. Alabert
[2] proposed to calibrate the radius of investigation by repeated Monte-Carlo forward flow
simulation. Using Equation 3.9, an optimal A was determined for a given spatial variation
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pattern of heterogeneous permeability field. A robust Aopt value of 0.010 in oilfield units
was obtained for specified levels of discretization and well test durations used in his study.
Alabert [2] also stated that the effective permeability determined by Relation 3.9 using time
interval (tmin, tmax) can be expressed as power average of heterogeneous block permeabilities
in an annular volume V (Aopt) defined by rmin(Aopt, tmin) and rmax(Aopt, tmax),

ke
∼= k(ω) =

⎡
⎣ 1

N

∑
ui∈V

k(ui)ω
⎤
⎦

1/ω

(3.11)

where k(ω) is the ω-power average permeability of the N permeability values k(ui), i =
1, . . . , N , at location ui within the volume of A. The optimal averaging power parameter, ω,
can also be determined jointly with parameter A through calibrations by repeated flow sim-
ulation and it has been shown to be remarkably robust [54, 110]. ω = −1 and 1 correspond
to harmonic and arithmetic averages respectively, whereas geometric average is obtained
as ω → 0. In many cases, ω is close to the geometric average (ω = 0). Alabert [2] and
Butler [21] also showed that the type of averaging can differ significantly from the geometric
average for particular test durations and for complex permeability heterogeneities.

With these two calibrated parameters (A and ω) and the infinite acting radial flow
interval (tmin and tmax), Equation 3.11 describes the relationship between the effective
permeability estimated from well test (ke) and the smaller scale permeability values (k(ui))
within the annular volume centered at the wellbore. The inner and outer radii of the annular
(rmin(A, tmin) and rmax(A, tmax)) are determined by Equation 3.9.

The approach of Alabert [2] was successfully implemented by Deutsch [55, 57]. The
constraints on the spatial distribution of permeability, defined by Equation 3.11, were inte-
grated in the construction of heterogeneous permeability fields using simulated annealing.
Results showed improvement in characterizing permeability heterogeneity and waterflood-
ing predictions due to the integration of well test data. A similar approach was used by
Sagar et al. [163, 164] but simply using the geometric average of the permeability values
within the influence region to approximate the well-test-derived effective permeability.

The single effective permeability as in Equation 3.8, does not reflect the radial variation
of permeabilities. At any instant in time t within infinite acting radial flow period, the pres-
sure derivative ( d�p

d log(t) = m(t)), the slope of pressure drawdown in the MDH plot, may be
computed from high resolution pressure measurements during the well test. Thus, an effec-
tive permeability ke(t) as a function of time t can be obtained according to Equation 3.8. For
each time (ti, i = 1, . . . , Nt), a corresponding effective permeability (ke(ti), i = 1, . . . , Nt)
is obtained (see Figure 3.3). Pressure derivative, m(t), is informed by a particular annular
volume centered at the wellbore [138]. Hence, the corresponding effective permeability at
time t, ke(t), is also informed by the permeability values in that annular volume. As a
consequence, a series of time-dependent effective permeabilities (ke(ti), i = 1, . . . , Nt) can
be inferred. These effective permeabilities refine the traditional single effective permeability
and more importantly, provide additional information on the radial variation of averaging
permeability values, which a single effective permeability can not provide.

Under the assumption of small variation of permeability, an analytical weighting function
is derived to specify the relative contribution of the permeability of various regions to the
estimation of effective permeability, ke(t) [138]. Figure 3.4 shows the normalized weighting



3.3. THE INVERSION APPROACH 33

dr
aw

do
w

n 
(p

si
),

 m
(t

) 
(p

si
/h

rs
),

 a
nd

 k
_e

(t
) 

(m
d)

Log(t), hours

Interpretation of Well Test

-2.00 -1.00 0.00 1.00 2.00

0.0

10.0

20.0

30.0

40.0

t_min t_max

m(t)

K_e(t)

Drawdown

m=2.8

t1

m(t1)

k_e(t1)

t2

m(t2)

k_e(t2)

t3

Infinite-Acting
Radial Flow

Figure 3.3: Interpretation of well test data for time-dependent effective permeabilities.

W
ei

gh
ts

, K
(t

_D
, r

_D
)

Log(r_D)

Kernel Weighting Function from Oliver (1990)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4
t_D=100 t_D=1000 t_D=10000

Figure 3.4: Kernel weighting at different times based on Oliver [138].

function for dimensionless time tD = 100, 1000, and 10000, respectively. The inner and
outer radii of the annular region for a given time can be taken as 0.12

√
tD and 2.34

√
tD,

which contain 98% of the contribution.
Based on above analytical results of Oliver [138], Feitosa et al. [69, 70] developed an

analytical inversion approach, called Inverse Solution Algorithm (ISA) to estimate the radial
distribution of permeability. On the basis of the same analytical weighting function, Sagar
[163, 164] used simulated annealing to integrate the pressure derivatives at different time
computed from well test into the permeability modeling.

3.3 The Inversion Approach

In multistage indirect inversion techniques, the well test data are first coded into spatial
representations of reservoir parameters for example permeability. The spatial representa-
tion retained from the well test is then honored in model construction. One approach is
to retain a single effective permeability (ke) from the well test data, relate this effective
permeability to the spatial distribution of permeability as in Equation 3.11, then constrain
the permeability values within the calibrated annular region to that single effective perme-
ability [2, 55, 57, 59, 163, 164]. This approach is simple and computationally fast; however,
not all information from the well test is used.
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This monograph emphasizes a new approach to integrate single well test data [193]. In
this approach (see Figure 3.3), pressure transient data p(t) is first interpreted to establish
the limits to infinite acting radial flow, that is, tmin and tmax. Pressure derivatives, m(ti) =

d�p
d log(t)

∣∣∣
t=ti

, are computed at a number of times, ti, i = 1, . . . , Nt (see Horne [94]). Effective

permeabilities, ke(ti), are then determined at these times ti based on estimates of μ, h, B, q,
and m(ti) according to Equation 3.8. The volume of investigation (V ∝ t) and the type of
averaging (ω) are calibrated. These parameters relate the effective permeabilities ke(ti) to
power averages of permeability values within annular regions V (ti) weighted by the kernel
function of Oliver [138] (see Figure 3.4). Thus, the permeability fields are constrained to
the well test “data”.

In the following sections, these steps are discussed in detail along with some important
implementation issues and applications to different types of heterogeneous reservoirs.

3.4 Interpretation of Pressure Transience

Early time effects, wellbore storage and near wellbore effects such as the skin effect, are
not relevant to reservoir petrophysical properties. Thus, early time pressure transient data
(t < tmin) are usually excluded from well test analysis. Similarly, late time effects such as
boundary effects are also not relevant to the type of reservoir heterogeneity considered here.
Boundary effects such as faults can usually be accounted for deterministically in reservoir
modeling. Hence, late time pressure transient data (t > tmax) are also usually excluded
from well test analysis. Figure 3.3 shows a typical MDH plot of pressure transient from a
single well test.

The pressure transient data within time interval [tmin, tmax] represent infinite acting
radial flow condition. This reflects easily understood responses of the reservoir system to
the flow rate change used in the well test. Well test is interpreted using only pressure
transient data in the infinite acting flow region. Within this region, the derivatives of
pressure drawdown can be calculated as (Horne [94], p79-80):

m(ti) =
(

d � p

d log(t)

)
i

=

[
log(ti/ti−k) � pi+j

log(ti+j/ti) log(ti+j/ti−k)
+

log(ti+jti−k/t
2
i ) � pi

log(ti+j/ti) log(ti/ti−k)

− log(ti+j/ti) � pi−k

log(ti/ti−k) log(ti+j/ti−k)

]
(3.12)

with ln(ti+j/ti) and ln(ti/ti−k) greater than 0.2.
Given the constant flow rate q, the estimates of μ, B, and h, and the derivatives of

pressure drawdown m(ti) at time ti, an effective permeability corresponding to time ti, can
be obtained according to (3.8), that is:

ke(ti) = 162.6
qBμ

|m(ti)| h (3.13)

For each time ti, i = 1, . . . , Nn, a time-dependent effective permeability is obtained (see
Figure 3.3). The idea here is to link this effective permeability to a power average of
permeability values weighted by the kernel function of Oliver [138] within a time-dependent
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annular reservoir region (see Figure 3.4). The annular volume and the type of averaging
are calibrated by repeated forward flow simulations.

3.5 Calibration of Volume and Type of Averaging

3.5.1 Volume of Averaging

Oliver [138] showed that, at given time t, the pressure derivative, m(t), hence also ke(t), is
a weighted average of permeability values in the reservoir. The weighting function K(rD,
tD) was derived as:

√
tDK(rD, tD) = 0.5

√
πr2

D

tD
exp

(
− r2

D

2tD

)
W1/2,1/2

(
r2
D

tD

)
(3.14)

where W1/2,1/2(z) is Whittaker’s function with expression as the following:

W1/2,1/2(z) =
z exp(−z/2)

2π

{ ∞∑
k=0

Γ(k + 1/2)
k!(k + 1)!

zk[Ψ(k + 1) + Ψ(k + 2)

−Ψ(k + 1/2) − ln(z)] +
2
√

π

z

}
(3.15)

where Γ(k + 1/2) is Gamma function and Ψ(k) is Euler’s Psi function. For small z (≤ 2.0),
good results can be obtained by using the first nine terms of Equation 3.15. When z is large
(z > 2.0), Equation 3.15 can be well approximated by the following series:

W1/2,1/2(z) =
√

z exp(−z/2)
(

1 +
1
4z

− 3
32z2

+
15

128z3
− 525

2048z4
. . .

)
(3.16)

The weighting function for three dimensionless times tD = 102, 103 and 104 are shown in
Figure 3.4. This weighting function specifies the relative contribution of permeability of var-
ious regions to the effective permeability at a given time. Based on the weighting function,
for a given time tD, an annular region that influences effective permeability estimate can be
determined, for example an annular region V (tD) can be selected that includes 98% of the
contribution with an inner radius rD min = 0.12

√
tD and an outer radius rD max = 2.34

√
tD

(see Figure 3.5). It is considered that the permeabilities outside this annular region do not
contribute to the estimation of effective permeability.

Oliver’s analytical solution clearly defines the time-dependent reservoir volume informed
by the effective permeability for a given time. As the time increases, the radii and the volume
of the annular region increase. The main assumptions behind the analytical expression
of Oliver [138] are that permeability variation is small about its mean, permeability is
hydraulically and spatially isotropic, and ideal radial flow conditions exist around the well.

In general, these assumptions are not met. Therefore, the actual volume of investigation
is not defined. Nevertheless, calibration of a scaling parameter (A) that accounts for any
deviations of reality from the assumptions, should be done. This parameter is defined by
the following equation.
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Figure 3.5: Defination of the inner and outer radii of a annular region based on the weighting
function of Oliver [138].

tD = A · 0.000264ket

φμctr2
w

(3.17)

where, the parameter A is different from the parameter A defined in Equation 3.9, although
both are used to define the volume of averaging. Parameter A in Equation 3.17 serves as
a scaling factor to shift the annular region at a given time defined by the kernel weighting
function (Equation 3.14).

3.5.2 Type of Averaging

Type of averaging must also be defined along with volume of averaging to calculate the effec-
tive permeability. The averaging process within the annular region, V (tD), depends on the
details of reservoir heterogeneity. Studies indicate that simple averages such as arithmetic,
geometric, harmonic, or geometric (in θ)-harmonic (radially) averages are not applicable.
The power average by Journel et al. [110] and Deutsch [54] expressed in Equation 3.11, is
used in this approach.

The power parameter ω defines the type of averaging. This can be calibrated by forward
flow simulation. Studies have shown that the value of ω depends on the “nature” of the
heterogeneity such as spatial variation patterns and anisotropy, and it is quite robust [54,
55, 56].

3.5.3 Example calibration

The detailed calibration procedure for A and ω is demonstrated using the following synthetic
example. The permeability field for this example is shown in Figure 3.6. A low permeability
ring of 6 md is embedded in an otherwise homogeneous permeability field of 30 md. Size
of the field is 2020 ft × 2020 ft, which is discretized into 101 × 101 cells of dimension 20 ft
× 20 ft. Width of the low permeability ring is 20 ft or one cell and its inner radius is 140
ft. The well is located at the center of the ring, also the center of the field, with a constant
flow rate of q = 10 STB/day. Other related parameters are constant: φ = 0.2, h = 10 ft,
μ = 0.3 cp, rw = 0.33 ft, B = 1.4 and ct = 5 × 10−6 1/psi.
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Figure 3.6: A low permeability ring embedded in a homogeneous permeability field
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Figure 3.7: Semilog plot of well test transient pressure data performed in the permeability field
shown in Figure 3.6

The well test is simulated using Eclipse with no-flow boundaries. Figure 3.7 shows the
semilog plot of pressure drawdown (�p), derivative of pressure drawdown ( d�p

d log(t)), and
the corresponding effective permeabilities (ke). The pressure transient data within the
time interval [tmin = 2.24 hrs, tmax = 50.12 hrs] are used for calibration for the infinite
acting flow region. Effective permeability values are computed at some (14) points within
this interval. The variation of effective permeabilities reflect the radial variation in the
permeability field, which is smoothed by the weighting kernel. This information helps in
identifying the location of the low permeability ring. If a single straight line is fitted for the
pressure transient data as in traditional well test analysis, a slope of 2.8 (see Figure 3.7),
hence a single effective permeability of 24.3 md is obtained. However, this single effective
permeability does not give any indication of the radial variation of the permeability field.

Figure 3.8 shows the arithmetic, geometric, and harmonic averages of permeability
within the annular regions defined by the weighting kernel. None of these simple averages
matches the well test-derived effective permeabilities, although their variation patterns are
similar. The correct type of averaging seems to be between the geometric and harmonic
averages.

Based on the well test-derived effective permeabilities within the selected time interval,
ke(ti), i = 1, . . . , Nt (Nt = 14 in this example), the calibration procedure for A and ω is as
follows:
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Figure 3.8: Comparison of the well test-derived effective permeabilities with simple average results

1. A number of (A, ω) pairs are selected and the radii of each annular region computed
according to A. Then, power average permeabilities k(A,ω)i, i = 1, . . . , Nt are com-
puted using permeability values in the annular region of each time, weighted by the
weighting function. For instance, Log(A) increments of 0.05 and ω increments of 0.05
can be chosen for the calibration.

2. The mean normalized absolute deviation (mNAD, which measures correlation) and
the mean normalized error (mNE, which measures bias) are computed as the following
(Alabert, 1989; Deutsch, 1992):

mNAD(A,ω) =
1
Nt

Nt∑
i=1

∣∣∣k(A,ω)i − ke(ti)
∣∣∣

ke(ti)
(3.18)

mNE(A,ω) =

∣∣∣∣∣
∑Nt

i=1 k(A,ω)i −∑Nt
i=1 ke(ti)∑Nt

i=1 ke(ti)

∣∣∣∣∣ (3.19)

3. A pair (Aopt, ωopt) is selected that jointly minimizes the values of mNAD and mNE.

Experience shows that the range of Log(A) is from -0.5 to 0.5. Figure 3.9 shows the
gray level maps of mNAD and mNE for values Log(A) ranging from -0.5 to 0.35 and
values ω ranging from -1 to 1. The optimal pair Log(Aopt) = −0.05 and ωopt = −0.8 jointly
minimizes both error terms.

The quality of the weighted power averages can be judged by plotting the average per-
meabilities with well test-derived effective permeabilities (see Figure 3.10). It is shown that
the weighting power averages match the well test-derived effective permeabilities with a
0.95 correlation coefficient. The calibrated optimal power ω = −0.8 indicates that the type
of averaging is close to harmonic average, which makes sense for this particular example
where the heterogeneity is caused by a ring. Also, considering the type of heterogeneity
cited in this example, in which the weighted average is very sensitive to the volume of aver-
aging, the agreement between the average permeabilities and the well test-derived effective
permeabilities is quite good.
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Figure 3.9: Gray level maps of the Calibration errors for Log(A) ranging from -0.5 to 0.35 and ω
ranging from -1 to 0.9.
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using the calibrated parameters Log(Aopt) and ωopt.
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3.6 Implementation Issues

This section discusses a number of implementation issues and documents more applications
in realistic heterogeneous permeability fields.

3.6.1 Spatial Discretization

Calibration of the parameters A and ω requires forward flow simulation. Spatial and time
discretizations are needed for numerical flow simulation, and there exist numerical errors
in simulation due to these discretizations. In general, early time well test responses from
numerical simulation are unreliable. Local refinement around the well location can improve
the early time results. Notwithstanding the ability to refine the grid, in practice, early time
pressure transient data of a given well test are usually associated with wellbore storage and
skin effects. Thus, “clean” early time data are difficult to acquire in reality. A common
practice in well test analysis is to disregard the early time data. A guideline will be estab-
lished to determine the early time limit after which results are not affected by numerical
errors.

To determine this early time limit, a numerical experiment is performed in a 2D square
domain with size of 2020 ft × 2020 ft and a constant permeability of 30 md. This domain
is discretized with different levels ranging from 31×31 cells to 161×161 cells with cell sizes
ranging from �x = �y = 65.2 ft to 12.5 ft. A well test is performed at a well located at
the center of the domain with a constant flow rate q = 10 STB/day. Eclipse [101] is used
to calculate the pressure transient at the wellbore without grid refinement. Other reservoir
parameters are: φ = 0.2, h = 10 ft, μ = 0.3 cp, rw = 0.33 ft, B = 1.4, ct = 5 × 10−6 1/psi.

Figure 3.11 shows the semilog plots of results from the numerical simulations using
different discretization levels. Because permeability is constant within the domain, the
effective permeabilities computed from the numerical results should reproduce the constant
permeability of 30 md. Apparently, due to numerical errors, early time results are not
correct. Increasing the level of spatial discretization reduces the value of the earliest time
tmin when the effective permeability reaches 30 md. Figure 3.12 shows the relationship
between square of dimensionless cell size (rD = �x/rw) and dimensionless early time limit
tD min. It is apparent that tD min increases exponentially with the dimensionless cell size.
This implies that the local refinement may be of little help in improving the numerical well
test pressure solutions.

Another issue in the numerical well test simulation is the late time effects due to the
limited size of the simulation domain. Boundary effects should not be used in the calibration.
Increasing the size of the simulation domain increases the time range for reliable calibration.
A numerical experiment is also carried out to establish guidelines for the selection of late
time limits.

Using a fixed cell size of �x = �y = 20 ft, the number of cells used in this experiment
ranges from 31×31 to 161×161 resulting in the size of the simulation domain ranging from
620 ft × 620 ft to 3220 ft × 3220 ft. Well test is performed at the center of the domain
with the same conditions as in the previous experiment. Figure 3.13 shows the semilog
plots of simulated well test results using different sizes of domain. Clearly, increasing the
domain size increases the late time limit (tmax). Figure 3.14 shows the relation between the
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Figure 3.11: Semilog plots of well test results in a given domain using different discretization levels.
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dimensionless late time limit (tD max) and the square of dimensionless half domain size (L2
D,

LD = L/rw with L being the half domain size). It is approximately a straight line which is
consistent with the traditional definition of radius of investigation as given in Equation 3.9.

For a given discretization level and a given size of domain in the numerical flow simula-
tion, the time interval [tmin, tmax] can then be selected based on Figures 3.12 and 3.14. Fig-
ure 3.15 shows the weighting functions used for the time limits (tmin = 2.23 hrs, tmax = 50.12
hrs) for a 2020 ft × 2020 ft domain discretized by 20 ft × 20 ft grid. It should be noted that
the radius of informed reservoir region at tmax = 50.12 hrs is about one half of the domain
size.

3.6.2 Anisotropy

Previous studies on integrating well test constraints mostly considered isotropic permeabil-
ity field and a circular annular region as the volume of averaging [2, 55, 163, 164]. It is
suggested here to use the same circular annular volume of averaging, calibrated by the
above procedure, for permeability fields with moderate anisotropy ratio (say < 10 : 1).
Here, “anisotropy” refers to the spatial variation of permeability. Whereas the permeabil-
ity values at a given location is assumed directionally independent, that is, hydraulically
isotropic.

An elliptical annular volume, oriented in the same direction as that of the permeability
and with the same anisotropy ratio, could also be considered. However, this implicitly
assumes that pressure “diffusion” due to well test has the same anisotropy. This concept
was found inappropriate since pressure “diffusion” in anisotropic permeability fields appears
more isotropic.

Figures 3.16 and 3.17 give two sets of permeability fields and corresponding pressure dis-
tributions at selected times. The anisotropy ratio of the permeability field (λ1/λ2) ranges
from 1 to 10, λ1 being the correlation length of maximum continuity (−30◦ from the x-
axis), λ2 being the correlation length of minimum continuity (60◦ from the x-axis). From
these figures, it can be seen that pressure diffusion has much weaker anisotropy than the
permeability. Ideally, an anisotropy ratio corresponding to the pressure anisotropy should
be used for calibrating the averaging volume. However, there is no easy way to estimate
pressure anisotropy from permeability anisotropy. Furthermore, pressure anisotropy may
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Figure 3.13: Semilog plots of well test results using different domain size with a fixed discretized
cell size.
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change with time. Therefore, an isotropic averaging volume is chosen even when the perme-
ability field is anisotropic. This approximation appears appropriate when the permeability
anisotropy ratio is less than 10:1 as shown in Figures 3.16 and 3.17.

To demonstrate this further, an example is given next to show the calibration quality of
well test-derived effective permeability in an anisotropic field using isotropic and anisotropic
averaging volumes. Figure 3.18 shows a 2020 ft × 2020 ft square domain which is discretized
into 101 × 101 cells by a 20 ft × 20 ft square grid. The anisotropy ratio in this synthetic
field is 5:1 with the direction of maximum continuity being −30◦ from the x-axis.

A well test at the center of the domain provides the semilog plot of the pressure transient
shown in Figure 3.19. The constant flow rate used in the well test is: q = 10 STB/d, other
parameters are: φ = 0.2, h = 10 ft, μ = 0.3 cp, rw = 0.33 ft, B = 1.4, ct = 5 × 10−6 1/psi.
The well test-derived effective permeabilities, within the selected time interval, indicate
increase and then decrease of permeability in the radial direction as the test duration
increases (see Figure 3.18).

In order to approximate the well test-derived effective permeabilities using weighted
power averages, the volume of averaging (A) and the type of averaging (ω) are calibrated
as discussed in Section 3.5. Two types of averaging volumes are used for comparison: an
elliptical annular volume and a circular annular volume. Figure 3.20 shows the weight-
ing functions at time t = 13.2 hrs. The averaging volume in Figure 3.20a has the same
anisotropy ratio as the permeability anisotropy (5 : 1) and is oriented to the same direction
as the permeability anisotropy (-30◦ from the x-axis). Figures 3.21 and 3.22 show the gray
maps of errors (mNAD and mNE) using different values of (A, ω) and different averag-
ing volumes. The optimal pairs obtained are Log(Aopt) = 0.25, ωopt = 0.2 using elliptical
volume, and Log(Aopt) = 0.3, ωopt = 0.3 using circular volume.

The quality of calibration can be seen from Figures 3.23 and 3.24 which show the com-
parisons and scatterplots of well test-derived effective permeabilities and the corresponding
weighted power averages based on the parameters calibrated using two types of averaging
volume. Clearly, better calibration results are obtained by using circular averaging volume
(ρ = 0.9) than elliptical volume (ρ = 0.7). This encourages the use of isotropic averaging
volumes.

As indicated in Figures 3.16 and 3.17, pressure “diffusion” is less anisotropic than per-
meability. From the pressure distributions at different times, shown in Figure 3.25, it
appears that anisotropy ratio of 2 : 1 is appropriate for the pressure “diffusion” in this field.
So, an elliptical volume with a 2 : 1 anisotropy ratio was tried to calibrate the effective
permeabilities, resulting in an optimal pair of parameters: Log(Aopt) = 0.45, ωopt = 0.2.
Figure 3.26 shows the values of the weighting function at time t = 13.2 hrs. The weighted
average values of permeability using this anisotropic averaging volume and the calibrated
parameters are compared with the well test-derived effective permeabilities in Figure 3.27.
Better approximations are obtained (ρ = 0.96). However, in practice, information on the
pressure anisotropy is usually not available.

3.6.3 3D versus 2D

3D reservoir models are usually required for reservoir simulation. Applicability of this
approach to 3D models is demonstrated in this section through an example, and the results
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Figure 3.16: Permeability fields and the corresponding pressure distributions due to a well test at
time t = 8.5 days. The permeability anisotropy varies from 1:1 to 10:1 from the top to the bottom:
the first set.
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Figure 3.17: Permeability fields and the corresponding pressure distributions due to a well test at
time t = 8.5 days. The permeability anisotropy varies from 1:1 to 10:1 from the top to the bottom:
the second set.
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Figure 3.18: A heterogeneous permeability field with anisotropic spatial variation patterns.
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Figure 3.19: The semilog plot of well test data performed in the anisotropic permeability field
shown in Figure 3.18.
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Figure 3.20: The weighting functions corresponding to an elliptical annular volume and a circular
annular volume at time t = 13.2 hours.
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Figure 3.21: Gray level maps of calibrated error terms using different values of parameters Log(A)
and ω: Elliptical average volume.

compared with those of 2D models.
Figure 3.28 shows a 3D permeability field in a 1830 ft × 1830 ft × 10 ft domain which

is synthetically generated by sequential Gaussian simulation method (Deutsch and Journel,
[61]). The domain is discretized into 61 × 61 × 8 cells with the size of each cell being
30 ft × 30 ft × 1.25 ft. The correlation lengths used to generate this permeability field
are: λx = 900 ft, λy = 300 ft, and λz = 2.5 ft. A well test at the center of the domain
is performed with a constant flow rate q = 10 STB/d. The well is perforated over the
entire thickness of the reservoir. Figure 3.29a displays the semilog plot of the well test
results computed by Eclipse. Other parameters used are φ = 0.2, μ = 0.3 cp, rw = 0.33 ft,
B = 1.4, and ct = 5 × 10−6 1/psi.

The optimal pair of parameters (A,ω) are calibrated using a annular cylindrical volume
of averaging centered at the wellbore, that is, the same weight is used for all cells with the
same radial distance from the wellbore. These optimal parameters, minimizing mNAD and
mNE, are Log(Aopt) = 0.2 and ωopt = 0.7. The scatterplot of the weighted power average
approximation and the true well test-derived effective permeabilities reveals an excellent
correlation (ρ = 0.98) (see Figure 3.29b).

Permeability values in the above 3D model are averaged in vertical direction to obtain a
2D permeability model as shown in Figure 3.30. Figure 3.31 shows the semilog plot of well
test data performed at the center of the model with the same conditions as used in the 3D
model. Results in Figures 3.29a and 3.31a are quite similar, indicating a nearly 2D radial
flow pattern in the 3D model. The optimal parameters calibrated using circular annular
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Figure 3.22: Gray level maps of calibrated error terms using different values of parameters Log(A)
and ω: Circular average volume.
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Figure 3.23: Comparisons of the well test-derived effective permeabilities and the weighted power
averages using different types of average volumes.
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Figure 3.24: Scatterplots of the well test-derived effective permeabilities and the weighted power
averages using different types of average volumes.
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Figure 3.25: Pressure distributions due to the well test at different times.
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Figure 3.26: Weighting function at time t = 13.2 hours using an elliptic average volume with
anisotropy ratio 2:1.
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Figure 3.27: Comparisons of well test-derived effective permeabilities and the weighted power
averages using the calibrated parameters.

Figure 3.28: A 3D heterogeneous permeability field.
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(a) Semilog Plot of Well Test Results (3-D)
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(b) Ke vs. Kave (3-D Model)

5.0 9.0 13.0 17.0

5.0

9.0

13.0

17.0

Number of data 14
Number plotted 14

X Variable: mean 13.307
std. dev. 0.763

Y Variable: mean 13.275
std. dev. 0.706

correlation 0.979
rank correlation 0.925

Figure 3.29: Semilog plot of well test result and scatterplot of well test-derived effective perme-
abilities with weighted power averages for the 3D permeability shown in Figure 3.28.
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Figure 3.30: The 2D permeability field obtained by vartically averaging the 3D field shown in
Figure 3.28.

volume of average are: Log(Aopt) = 0.15, ωopt = −0.7. The scatterplot of the weighted
power average approximation and the true well test-derived effective permeabilities is given
in Figure 3.31b. An excellent correlation coefficient value of 0.982 is obtained, which is even
better than that of the 3D model.

Essentially, these results indicate that the calibration works well for 3D models. Param-
eter A seems to be almost similar for both 2D and 3D models. While parameter ω is higher
in 3D models than in 2D models, which is consistent with the study of Noetinger and Haas
[137]. Thus in 3D, the type of averaging is closer to arithmetic averaging, whereas in 2D,
it is closer to harmonic. The higher ω values for 3D may be explained by the fact that in
3D flow toward the wellbore has more freedom than in 2D.

Multiple Realizations to Calibrate Parameters A and ω

In the above examples, synthetic permeability fields are used where permeability values
are known exhaustively to calibrate optimal parameters (Aopt, ωopt), so that the weighted
power averages best approximate the well test-derived effective permeabilities. In practice,
however, there is no access to the exhaustive permeability field. Only the pressure transient
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(a) Semilog Plot of Well Test Results (2-D)
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(b) Ke vs. Kave (2-D Model)
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Figure 3.31: Semilog plot of well test result and scatterplot of well test-derived effective perme-
abilities with weighted power averages for the 2D permeability shown in Figure 3.30.

data and some knowledge about the “nature” of heterogeneity in the reservoir system are
available.

One way to solve this problem is to calibrate the parameters (A, ω) by repeated Monte-
Carlo flow simulation [2, 55]. First, multiple realizations of the permeability field are gener-
ated with relevant statistical properties. Next with conditions as close as to those used in the
field, the well test is simulated in each realization to obtain effective permeabilities. Thus
for each realization, available are the exhaustive permeability values and the corresponding
well test-derived effective permeabilities, ke(i, j), i = 1, . . . , L and j = 1, . . . , Nt. Here, L
and Nt are the realization number and the number of time-dependent effective permeabili-
ties, respectively. Finally, using the simulated effective permeabilities from the whole set of
realizations, a pair of optimal parameters (Aopt, ωopt) can be calibrated following the same
procedure as in Section 3.5.

An important issue related to the above calibration procedure is the sensitivity of pa-
rameters A and ω to different realizations with the same heterogeneous features, that is, the
robustness of the optimal parameters. To test this, two sets of 20 permeability realizations
are generated with different spatial variation features: set A is isotropic with correlation
lengths = 900 ft, set B is anisotropic with maximum correlation length 1500 ft in the di-
rection of −30◦ and minimum correlation length 300 ft in the direction of 60◦. The domain
sizes in both cases are 2020 ft × 2020 ft, which are discretized into 101 × 101 cells with the
size of each cell being 20 ft × 20 ft. Figure 3.32 shows 4 realizations from each set. The
permeability value at the center of the field is fixed at 12.5 md in all realizations.

A well test with constant flow rate q = 10 STB/d is simulated on each realization of
permeability, and an optimal parameter pair (Aopt, ωopt) is calibrated for each realization.
Figure 3.33 shows the histograms of 20 optimal A’s and ω’s from 20 permeability fields. The
values of Log(Aopt) calibrated from individual realizations range from −0.4 to 0.4, whereas
the values of ωopt vary from −0.6 to 0.6.

A single pair of parameters (Aopt, ωopt) is established for the two sets from the multi-
ple (20) realizations. The resulting optimal parameters are Log(Aopt) = 0.0, ωopt = −0.1
for set A, and Log(Aopt) = −0.1, ωopt = 0.0 for set B. The scatterplots of power average
approximations and the simulated well test-derived effective permeabilities for all 20 real-
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Figure 3.32: Four realizations of isotropic (set A) and anisotropic (set B) permeability fields.
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Figure 3.33: Histograms of calibrated parameters Log(A) and ω from 20 realizations of isotropic
(set A) and anisotropic (set B) permeability fields.

izations of both permeability sets are given in Figure 3.34. The effective permeabilities are
unbiased and there is an excellent correlation values for both sets (> 0.93), implying that
the optimal parameters calibrated from multiple realizations are quite robust and can be
used to approximate the well test-derived effective permeabilities from any single realiza-
tion. The average permeability values calculated using these parameters can be used to
approximate the true well test-derived effective permeabilities. Also, the calibration quality
in isotropic permeability fields (set A) is higher than in anisotropic fields (set B), indicating
that the calibrated parameters may be more robust in isotropic permeability field than in
anisotropic permeability fields.

In summary, it appears that the optimal parameters calibrated from multiple realiza-
tions are insensitive to the details of the realization and can be used to approximate the
well test-derived effective permeabilities from any single realization. The parameter values
(A = 1.0 and ω = 0.0) seem to be fairly good first approximations for 2D isotropic or
anisotropic permeability fields. The value of ω = 0.0 corresponds to geometric average of
permeability values within the time-dependent annular reservoir volume. It should be noted
that this geometric average is different from geometric average of well permeability data.
The quality of calibration in isotropic permeability fields appears better than in anisotropic
fields, indicating the calibrated parameters to be more robust in isotropic permeability fields
than in anisotropic permeability fields. This can be seen from the larger scatter in Figure
3.34b than in Figure 3.34a.

3.6.4 Calibration on Realistic Heterogeneities

A number of realistic, but synthetic, reservoir models are used here to illustrate the limita-
tions and range of applicability of this approach.

Lithofacies control: carbonate reservoir analogue

Fluid flow in a carbonate reservoir is typically controlled by the lithology distribution. The
variations of reservoir petrophysical properties within each lithofacies are relatively small.
In this model, a 2D permeability field in a 2020 ft × 2020 ft square domain essentially
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(b) Ke vs. Kave, Anisotropic Model
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Figure 3.34: Scatterplots of the well test-derived effective permeabilities of 20 realizations and the
weighted power averages using a single pair of optimal parameters Log(Aopt) and ωopt, (a) isotropic
field, (b) anisotropic field.

Facies 1 2 3 4
Proportion 0.15 0.35 0.35 0.15
Permeability, md 1 10 50 200
Porosity 0.15 0.20 0.25 0.30
Variogram type Exp. Exp. Exp. Exp.
Max. correlation length, ft 1600 160 160 1600
Min. correlation length , ft 40 80 80 40
Angle of max. continuity -30 -90 -90 -30
Relative nugget effect 0.1 0.0 0.0 0.1

Table 3.1: Statistics and properties of four facies used to construct lithofacies model.

controlled by 4 lithofacies is considered. The statistics and properties of these 4 facies are
listed in Table 3.1.

Based on the properties in Table 3.1, a lithofacies distribution model is generated using
sequential indicator simulation [61]. Figure 3.35 shows the resulting lithofacies model. The
petrophysical properties, i.e., permeability and porosity, of different facies are different, but
constant within the same facies.

A well test performed at the center of the domain with a constant flow rate q = 10
STB/day is simulated using Eclipse. Figure 3.36 shows the semilog plot of the transient
pressure data, the drawdown derivatives and the corresponding effective permeabilities. The
well test-derived effective permeabilities in the time interval [tmin = 2.51 hrs, tmax = 100 hrs]
are used to calibrate the circular volume of averaging and the type of averaging, resulting
in optimal parameter pair Log(Aopt) = −0.4, ωopt = 0.0.

The weighted power averages of permeability and the true well test-derived effective
permeabilities are compared in Figure 3.36. Again, excellent approximations are obtained
from weighted power averages using the calibrated parameters. This example also shows
that the approach works when porosity is spatially variable, although this variability is
ignored when calibrating the parameters.
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Figure 3.35: A synthetic carbonate reservoir analogue with 4 types of lithofacies.
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(a) Semilog Plot of Well Test Results
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(b) Ke vs. Kave (Carbonate Reservoir)
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Figure 3.36: Semilog plot of well test result and scatterplot of well test-derived effective per-
meabilities with weighted power averages for the 2D carbonate reservoir model shown in Figure
3.35.
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(a) Image of Channel Distribution in a 3-D Fluvial Reservoir (b) Spatial Distribution of Permeability Within Channels 

Figure 3.37: A 3D fluvial reservoir model constructed by a hierarchical object-based geostatistical
method and the corresponding permeability distribution. In (a) channel is colored red, whereas
shale is colored yellow. The bottom cell of every channel is colored blue. The permeability is color
coded with blue being low permeability and red high permeability.

Fluvial Reservoir Analogue

Another typical reservoir is a braided stream fluvial reservoir. A characteristic feature of
many fluvial reservoirs is the presence of sinuous sand-filled channels within a background
of floodplain shale.

A 3D fluvial reservoir model is generated using a recently developed hierarchical object-
based geostatistical method [62]. Figure 3.37 shows the resulting channel model and the
permeability distribution with the channels. The size of the model is 61 × 61 × 8 with cell
size of 30 ft × 30 ft × 1.25 ft. The spatial distribution of permeability within channels is
generated using the sequential Gaussian simulation (sgsim, Deutsch and Journel [61]) with
geometric mean 30 md and anisotropic spherical variogram (with correlation lengths 750
ft, 150 ft and 1.25 ft for x−, y− and z− directions, respectively). In this reservoir model,
86 % of the domain is filled by channels, whereas 14 % is filled by floodplain shale. The
bottom cells of each channel (see Figure 3.37a) account for 28 % of the entire reservoir
model. A very small permeability value (0.001 md) is assigned to all shale cells and a
relatively small permeability value (0.1 md) is assigned to all bottom cells of the channels
which account for the reduction of permeability between the channels and shale facies. The
porosity is assumed constant within each facies: φ = 0.1 for shale, φ = 0.15 for bottom cells
of channels, and φ = 0.2 for channels.

A well test is performed at the center of the domain with a constant production rate
q = 10 STB/day. The well is completed and perforated over the entire thickness of the
reservoir. Other parameters used are μ = 0.3 cp, rw = 0.33 ft, B = 1.4, and ct = 5 × 10−6

1/psi. Figure 3.38a shows the semilog plot of the resulting pressure transient from the well
test and the well test-derived effective permeabilities. The effective permeabilities decrease
with time. The parameters for weighted power averaging are calibrated using pressure
transient data within time interval tmin = 3.16 hours and tmax = 39.8 hours. Resulting
optimal parameters are Log(Aopt) = 0.0 and ωopt = 0.4. Figure 3.38b shows the scatterplot
of the well test-derived effective permeabilities and the weighted power averages computed
by using the calibrated parameters. A good correlation is observed implying excellent
calibration quality.
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(a) Semilog Plot of Well Test (Fluvial Reservoir, 3-D)
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(b) Scatterplot of Ke and Kave: Fluvial Reservoir
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Figure 3.38: Semilog plot of well test result and scatterplot of well test-derived effective perme-
abilities with weighted power averages for fluvial reservoir model shown in Figure 3.37.

To test the applicability of the technique in low net-to-gross fluvial reservoirs, another
fluvial reservoir model is constructed as shown in Figure 3.39. In this model, only 56 % of
the field is filled by channels and 44 % by shale. The bottom cells of channels account for
24 % reservoir domain. This reservoir model shows clear linear features.

Again, a well test is performed at the center of the domain with a constant production
rate q = 10 STB/day. Other parameters are kept same as in the previous example. Figure
3.40a shows the semilog plot of the resulting pressure transient from the well test and the
well test-derived effective permeabilities. Linear flow behavior is observed in this figure
due to the effects of channel distribution, that is, the pressure drawdown derivatives show
two distinct relatively constant values: a smaller value at early time and a larger value at
later time (see Horne [94]). The parameters for weighted power averaging are calibrated
using pressure transient data within time interval tmin = 3.16 hours and tmax = 39.8 hours.
Resulting optimal parameters are Log(Aopt) = −0.1 and ωopt = 0.6. Figure 3.38b shows the
scatterplot of the well test-derived effective permeabilities and the weighted power averages
computed by using the calibrated parameters. The match is poor. This indicates the
weighted power averages using isotropic average volume fail to reproduce the well test-
derived effective permeabilities when flow is strongly channelized into a small number of
channels within a low-net-gross fluvial reservoir, that is, when strong linear flow condition
prevails.

To improve the quality of calibration, an anisotropic (elliptical) average volume oriented
at the same direction of the channel distribution is chosen with a anisotropy ratio of 5 : 1
for a new calibration. The resulting optimal parameters are Log(Aopt) = 0.1 ωopt = 0.6.
The scatterplot of the well test-derived effective permeabilities and weighted power averages
using the new calibrated parameters is shown in Figure 3.41. A good correlation is obtained.
This implies that the use of large anisotropy averaging volume may be suitable for low net-
to-gross fluvial reservoir when the type of average volume is carefully determined according
to the spatial distribution patterns of channels. The distance to channel boundaries may
be interpreted from well test data alone [93]. Orientation of channels may be inferred from
other information. This information may be of help in determining an appropriate type of
averaging volume in calibration.
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(a) Image of Channel Distribution in Another Fluvial Reservoir (b) Spatial Distribution of Permeability Within Channels    

Figure 3.39: Another 3D fluvial reservoir model constructed by a hierarchical object-based geo-
statistical method and the corresponding permeability distribution. In (a) channel is colored red,
whereas shale is colored yellow. The bottom cell of every channel is colored blue. The permeability
is color coded with blue being low permeability and red high permeability.
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(a) Semilog Plot of Well Test (Fluvial Reservior, 3-D)
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(b) Scatterplot of Ke and Kave: Fluvial Reservoir
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Figure 3.40: Semilog plot of well test result and scatterplot of well test-derived effective perme-
abilities with weighted power averages for fluvial reservoir model shown in Figure 3.39.
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Scatterplot of Ke and Kave: Anisotropic Average Volume
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Figure 3.41: The scatterplot of well test-derived effective permeabilities with weighted power
averages using anisotropic averaging volume for fluvial reservoir model shown in Figure 3.39.
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Figure 3.42: Facies and property models for platform A segment model.

3.7 Field-Scale Example

All permeability fields used in the previous sections are computer generated. In this section,
documented is an application of the approach in two complex 3D segment reservoir models
which are constructed based on real field data from a large Nigerian reservoir (VAA reser-
voir). The method of constructing these two segment models is described in the Appendix.

Figure 3.42 shows the property maps (facies, porosity and horizontal permeability) of
segment model at platform A, consisting of 43×51×10 cells with uniform cell size of 200
ft × 196 ft × 20 ft. The permeability is isotropic in horizontal plane (i.e., kx = ky), and
smaller vertical permeability kz = 0.7kx. Three lithofacies are identified in this model:
impermeable shale (k ≈ 0 md, φ < 0.20), high permeable upper shoreface (k ∝ 1000− 5000
md, φ ∝ 0.30 − 0.35), and intermediate permeable lower shoreface (k ∝ 50 − 1000 md,
φ ∝ 0.21 − 0.30).

A vertical well located at the center of cell (22, 30) is used to perform a well test in this
model with a constant flow rate q = 2000 STB/day. The well is completed and perforated
over the entire thickness of the reservoir. Figure 3.43a shows the semilog plot of well test
data. Other parameters used are μ = 0.3 cp, rw = 0.33 ft, B = 1.4, and ct = 5 × 10−6

1/psi. The optimal parameters calibrated from this data set are: Log(Aopt) = −0.25 and
ωopt = 0.4. Again, a higher value of ω than geometric average is obtained for this 3D
model. The scatterplot of the well test-derived effective permeability and the weighted
power averages of permeability is given in Figure 3.43b. Good correlation is obtained.

The other segment model is at Platform C which contains 53×55×10 cells with uniform
cell size of 168 ft × 166 ft × 20 ft. Figure 3.44 shows the property maps (facies, porosity
and permeability) in this model. A well test is conducted at a vertical well located at the
center of cell (34, 28), with a constant flow rate q = 2000 STB/day. Figure 3.45a shows the
semilog plot of the well test results. Using the calibration approach, the optimal parameters
for this model are: Log(Aopt) = −0.2 and ωopt = 0.35. The scatterplot of well test-derived
effective permeability and the weighted power averages of permeability is given in Figure
3.45b: again excellent correlation is obtained.
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(a) Semilog Plot of Well Test Results: VAA Plat. A
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Figure 3.43: Semilog plot of well test result and scatterplot of well test-derived effective perme-
abilities with weighted power avegares for the platform A segment model shown in Figure 3.42.
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Figure 3.44: Facies and property models for platform C segment model.
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Figure 3.46: The reference ln(k) field.

Results from the experiments in this section also indicate that porosity variations can
be neglected in the calibration of well test-derived effective permeabilities.

3.8 Geostatistical Reservoir Models Honoring Well Test Data

Until now, the validation of calibration process is demonstrated for two parameters by
assuming that the real permeability field is known. In this section, the entire process
of Figure 3.1 is recounted to mimic a real practical case, however still using a synthetic
field. The goal is to demonstrate application of the workflow of Figure 3.1, to construct
geostatistical reservoir models that honor the well test data, and also to show the value of
single well pressure transient data in reservoir characterization.

First, a reference permeability field is generated for which a synthetic well test data
is obtained using a flow simulator. Effective permeabilities are computed using well test
interpretation method. Optimal parameters log(A) and ω are then obtained through the
proposed calibration process using multiple realizations of permeability field with the same
geostatistical features as the reference field. An annealing based technique is finally used to
construct permeability models that honor the effective permeabilities, as well as the desired
histogram and variogram.

Figure 3.46 shows the reference permeability field with 50×50 grid, the size of each grid
is 80 ft times 80 ft. The permeability field for this field is generated by the sequential
Gaussian simulation (sgsim) (GSLIB, [61]) with an anisotropic spherical type of variogram.
The angle of anisotropy is at 45 degree. The output histogram and variogram of this model
are also shown in the same figure.
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Figure 3.47: Pressure drawdown and effective permeabilities.

A well test is performed at the center of the field with a constant production rate of
50 STB/day. Other parameters used for generating well test data are: φ = 0.2, h = 10 ft,
μ = 0.3 cp, rw = 0.33 ft, B = 1.4, ct = 5× 10−5 psi. The corresponding pressure drawdown
curve is shown in Figure 3.47. The time limits of infinite radial flow are determined to be
at tmin = 0.63 hrs and tmax = 10 hrs. The effective permeabilities within the selected time
limits are given in Figure 3.47b.

In order to calibrate the two parameters, multiple realizations of ln(k) are generated
using sgsim with the same variogram and histogram as the reference field, and conditioned
to well data. Figure 3.48 shows four of the generated ln(k) fields. The same well test is
simulated in all generated realizations and effective permeabilities computed with the same
interpretation method.

These effective permeabilities are then used to calibrate the two parameters A and
ω. The resulting optimal parameters are log(A) = 0.0 and ω = 0.3 (see Figure 3.49).
With these parameters, the cross-plot of computed effective permeabilities and power-
averaged permeabilities show good correlation as shown in Figure 3.49e. It is noted that
an anisotropic average volume is used when calibrating the two parameters considering the
anisotropic feature of permeability field. The calibration anisotropic average volume has
the same principle directions as the variogram of permeability, but the anisotropic ratio of
calibration volume (2) is smaller than the variogram anisotropic ratio (5). Figure 3.50 shows
the reservoir volumes, as well as the weights used in computing power weighted averages of
permeabilities at different times, based on the calibrated optimal parameters.

The next step is to construct reservoir permeability models that honor the power
weighted averages. An annealing-based approach is used for such purpose with an ad-
ditional component in the objective function as:

Owt =
nwt∑
i=1

[
k(i) − k

∗
v(i)(i)

]2

where k(i) is the well test derived effective permeability at time t = ti, i = 1, ..., nwt k
∗
v(i)(i)

is the weighted ω-power average permeability:
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Figure 3.48: Four realizations of ln(k) fields for calibration.
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Figure 3.49: Calibration results.
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Figure 3.50: Kernel weights at different times.
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k
∗
v(i)(i) =

⎡
⎣ 1∑N

i=1 λ(rD, tD)

∑
ui∈v(i)

λ(rD, tD)k(ui)ω
⎤
⎦

1/ω

where ω-power average permeability of the N permeability values k(ui), i = 1, ..., N , at
location ui within the volume V (i). A is a scaling parameter of dimensionless time to define
the correct annular volume for averaging, λ(rD, tD) is the kernel weighting function.

The program swsasim modified from original sasim (GSLIB, [61]) is used for generating
multiple realizations of permeability that honor given histogram, variogram, and power
weighted averages of permeabilities. Figure 3.51 shows four realizations of permeability
fields by sgsim (only honor histogram and variogram) and swsasim (honor histogram,
variogram and weighted power average permeabilities).

Finally, the reproduction of well test pressure transient data is checked by performing
the same well test simulation in 20 realizations. Figure 3.52 shows the pressure drawdown
and effective permeabilities: results at the left hand side are from the sgsim generated
models where weighted power average permeabilities are not honored, while the results on
the right are from the swsasim generated models that honor the weighted power averages.
It can be seen that both pressure data and effective permeabilities are much better repro-
duced by integrating well test data. It should be noted, however, that it is impractical
to exactly reproduce the pressure transient data by using the proposed approach since the
pressure data are conditioned in the model indirectly. Rather, they are interpreted into ef-
fective permeabilities (the real features or spatial representation of pressure data), and the
effective permeabilities are approximated by weighted power averages using two calibrated
parameters.

Considering the facts that the pressure drawdown data are usually inaccurate in most
cases, and there are more uncertainties in reservoir models, it is reasonable to argue that
the exact reproduction of those well test derived pressure transient data is not necessary.
On the other hand, it is suggested that particular user may check the final reproduction of
the pressure responses to make sure that the results are satisfactory.

If the goal is to reproduce the pressure responses in an accurate degree so that it can
not be achieved by this simple technique, it is suggested to use the inversion techniques
discussed in the next chapter.

3.9 Discussion

Well test pressure transient data can be interpreted to yield time-dependent effective per-
meabilities by conventional well test analysis techniques. These time-dependent well test-
derived effective permeabilities are controlled by permeability values within an annular
volume that can be approximated by Oliver’s analytical model [138].

A series of time-dependent weighted power averages of permeability can be used to
approximate the well test-derived effective permeabilities. This requires two parameters:
A to define the volume of averaging and ω to define type of averaging. The calibration of
these parameters is straight forward in both 2D and 3D. Using the optimal parameters A
and ω calibrated by the approach discussed, the weighted power averages of permeability
give good approximations to the well test-derived permeabilities.
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Figure 3.51: Multiple realizations constructed.
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Figure 3.52: Pressure responses and effective permeabilities from before or after well test data are
incorporated.

With this technique, well test (build-up or drawdown) data can be coded to spatial
representations of detailed permeability distributions as long as radial analysis is valid.
The results of this technique serve as input constraints in reservoir model-building.

The pressure transient data from a single well test can only provide constraints on
radial variation of reservoir properties because pressure is measured at only a single point.
Thus no direction information or multiple-point connectivity information can be retrieved.
Instead, the directional information or constraints on the multiple-point spatial connectivity
of reservoir properties should be interpreted from multiple-point pressure measurements,
such as multiple-well tests. By integrating multiple-well pressure transient data, additional
spatial constraints on the permeability distribution may be resolved, resulting in a better
description of reservoir heterogeneity and less uncertainty in forecasting.

3.10 Hydraulic versus Geostatistical Anisotropy

There are two types of anisotropy frequently referred to in reservoir simulation: hydraulic
anisotropy and geostatistical anisotropy. A porous medium is hydraulically anisotropic if the
hydraulic behavior at any given location has directional dependence. Permeability at any
given point within the medium is then a tensor with different values for the diagonal terms.
Whereas geostatistical anisotropy refers to the spatial variation features of the permeability
values within the medium, which is characterized by its variogram.

A medium can have any combination of these two types of anisotropy. The anisotropy
discussed in this chapter is geostatistical anisotropy only, that is, permeability is direction
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Figure 3.53: Pressure distributions at two different times in a hydraulically anisotropic permeabil-
ity field, with kx/ky = 30/5.

independent at each location, but the variogram of the permeability values within the field
is anisotropic in terms of correlation lengths in different directions.

The pressure diffusion in a hydraulically anisotropic permeability field should directly
follow the hydraulic anisotropy feature. This can be seen from the pressure distributions
in a homogeneous 2D hydraulically anisotropy field with kx = 30 md and ky = 5 md (see
Figure 3.53). The “shapes” of pressure diffusion follow the square root of the “hydraulic
anisotropy” as predicted by theory, i.e., a 30:5 kx:ky anisotropy leads to pressure contours
that follow a 2.45:1 anisotropy.

The anisotropy in the variogram range leads to an apparent hydraulic anisotropy at a
larger scale. However, the hydraulic anisotropy due to geostatistic anisotropy is much less
than the anisotropy of the variogram, which was demonstrated earlier in the chapter. To
further illustrate this, the effective permeabilities of the entire field are calculated in different
directions for geostatistically anisotropic but hydraulically isotropic fields. The anisotropy
of effective permeability can be used to reflect the apparent hydraulic anisotropy at a larger
scale due to geostatistical anisotropy.

The effective permeabilities in six cases are computed with anisotropic variogram ranges
increasing from 5 to 30. In each case, 100 permeability realizations are used, with log
permeabilities being normally distributed in a 80 × 80 square domain. Each domain is
discretized into 80 × 80 cells with cell size being 1 × 1.

Figure 3.54 shows the histograms of the anisotropy ratios of effective permeabilities
for the six cases. The relationship between the anisotropy ratios of variograms and the
anisotropy ratios of effective permeability or apparent hydraulic anisotropy can be seen in
Figure 3.55. Mean values are used for the anisotropy ratios of effective permeability in
this figure. Clearly, the anisotropy of effective permeability, that is the square of pressure
diffusion anisotropy, is much less than the anisotropy of the variogram.

The square root of effective permeability anisotropy ratio is used for the calibration of
average volume here. Inspecting Figures 3.16 and 3.17, the pressure diffusion anisotropy is
found to be about 1.5 to 1.7 for the variogram anisotropy of 5 to 10, which is consistent
with the results as shown on Figure 3.55.

Finally, it should be emphasized that it is not straightforward to generalize the relation
between the anisotropy of variogram and the effective permeability, thus pressure diffusion,
as shown in Figure 3.55 since it depends on (1) the distribution of permeability, (2) the
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Figure 3.54: Histograms of anisotropy ratios of effective permeability from 100 realizations of
geostatistically anisotropic fields.

shape of the variogram, (3) the presence of short scale variability - nugget effect, and (4)
the block size over which the effective permeability is calculated.

In practice, given the variogram anisotropy of permeability field, the pressure diffusion
anisotropy approximately may be established by repeated forward flow simulations using
multiple permeability realizations with the same variation features as observed from field
data.
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Figure 3.55: Relation between the anisotropy of effective permeability and the anisotropy of
correlation lengths (variogram).
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3.11 Exercise

3.11.1 Problem Setting

This is a synthetic reservoir, which we will characterize with the single-well single-phase
inversion technique discussed in the chapter. For simplicity and applicability of the supplied
programs, we restrict ourselves to 2D with a constant thickness of 20 ft. Areal extent of the
reservoir is discretized by a 64 × 64 grid of the dimension 100 ft ×100 ft. Other reservoir
and fluid properties are: φ 0.2, B 1.4, pi 1502.008 psia, μ 0.3 cp, and c 5.5 × 10−5 1/psia.
Initial reservoir pressure is 1502.008 psia. The well is located in the (38,38) grid block.
Wellbore radius is 0.33 ft. A reference ln(k) distribution is available (ref2d.dat). This is
usually obtained from static (both hard and soft) data integration. The mean and variance
of ln(k) are 0.73 and 0.6084, respectively. The reference ln(k) distribution is modeled by
a two-structure variogram model with no nugget effect. The first structure is a spherical
model with horizontal ranges 900 and 1400 ft and sill contribution of 0.5, and the other is
a Gaussian model with horizontal ranges 1500 and 3200 ft and sill contribution of 0.5.

3.11.2 Steps Through the Single-Well Single-Phase Inversion Exercise

S1 Perform forward flow simulation to obtain synthetic well test data.

Forward flow simulation is performed to obtain synthetic well test data. This is not
required when well test data from real well test or any other source are available. The
program, spsim, is used to do the flow simulation. The parameter file for spsim is
shown in Figure 3.56.

Here, ref2d.dat has the reference ln(k) distribution. A minimum time step of 0.01
and a maximum of 100 days are used. The simulation is performed for a total time
of 1400 days. Maximum time step increment/decrement factor is 2.5, while there are
nine time step controls. It is suggested that the duration of the well test data should
be long enough to have the infinite-acting radial flow period. Any further well test
data is not required as they are influenced by the boundary effects rather than the
desired reservoir heterogeneity to be characterized.

N1 Infinite-acting radial flow period should not be masked by the initial wellbore
effects or the late boundary effects. One way to get around this problem for
synthetic data sets is to make the grid dimensions larger, so that the late effects
are not pronounced in the well test data for a reasonable length of time. Users
should examine the consequences for various grid dimensions, or change of fluid
and reservoir properties.

S2 Determine the well test derived effective permeability and time limits for radial flow
period. (Interpretation Stage)

wtperm is used to compute the slope and effective permeability. The parameter file
for wtperm is shown below in Figure 3.57.
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Parameters for SPSIM

**********************

START OF PARAMETERS:

../workdir/ref2d.dat -file ln(k) field

2 -columns ln(k) data

3 -debugging level

../workdir/spsim2d.dbg -file for debug output

../workdir/spsim2d.out -file for output pressure solution

1 -number of realizations

64 50.0 100.0 -X grid size: nx, xmn, xsiz

64 50.0 100.0 -Y grid size: ny, ymn, ysiz

1502.008 -initial pressure (psia)

1.4 0.2 20 0.3 5.5e-5 -B, poro, thick,visco, comp

1 -15 -number of wells, rate

38 38 0.33 -well location i,j, and radius (ft)

0.01 100 1400 2.5 9 -tsmin,tsmax,t_max,tfact,no. of time step control

5 0.01 -time step control, nt, dt

5 0.05 -time step control, nt, dt

5 0.1 -time step control, nt, dt

5 0.5 -time step control, nt, dt

5 1.0 -time step control, nt, dt

5 5.0 -time step control, nt, dt

5 25.0 -time step control, nt, dt

5 50.0 -time step control, nt, dt

10 100.0 -time step control, nt, dt

Figure 3.56: Parameter file for spsim.

Parameters for WTPERM

*********************

START OF PARAMETERS:

..\workdir\spsim2d.out -file with pressure data

1 2 -columns for time and pressure

..\workdir\wtperm2d.out -file for output pressure solution

1 55 -number of realizations & time steps

64 50.0 100.0 -X grid size: nx, xmn, xsiz

64 50.0 100.0 -Y grid size: ny, ymn, ysiz

1502.008 -initial pressure (psi)

15 1.4 0.2 20 0.3 5.5e-5 -flowrate,B,poro,thick,visco,comp

38 38 0.33 -well location i,j, and radius (ft)

Figure 3.57: Parameter file for wtperm.
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Any plotting tool can be used to draw the semilog plot of drawdown, slope and
effective permeability versus logarithm of time in hours. Examining the semilog plots,
the time limits are determined approximately. Usually, for a homogeneous reservoir
this can be easily done. However, for realistic reservoirs, the idea is to first decide
on the time limits from these graphs, then perform the calibration (which is the next
step) and compute the correlation coefficient of well test derived effective permeability
and the calibrated power-law averaged effective permeability. If a good correlation is
obtained, then proceed with the next step. Otherwise come back to re-approximate
the time limits.

N2 Time limits interpretation can be subjective. Users should examine the conse-
quences of using different time limits for the same reservoir and fluid conditions.

N3 Users should also inspect the semilog plots for the presence of any obvious trends
in the permeability heterogeneity. Corroboration of any initial interpretation
with the later heterogeneity characterization should add to the confidence of the
study.

S3 Calibrate the optimal parameter pair (ω and A) and obtain the calibrated power-law
averaged permeability. (Calibration Stage)

The program, swspcali, is used to compute the optimal parameter pair (ω and A).
The parameter file for swspcali is shown in Figure 3.58.

An isotropic permeability field and a circular annular region for the volume of averag-
ing are considered here. log(tmin) and log(tmax) values of 2.32 and 3.8 are used. For
calibration, log(A) is discretized into 25 steps from 0 to 1, while ω into also 25 inter-
vals from -0.5 to 0.5. The geometric mean of 2.0698 md is obtained from the reference
permeability distribution. Number of time steps used is 53, which is obtained from
the response of wtperm.

Three output files are obtained: one for errors, one for permeabilities and, the other
for kernel weights. The permeabilities computed are for the case of minimizing both
normalized absolute deviation and normalized error. One can get the permeabilities
for the simply absolute deviation or normalized error using “quick pick parameters”
option. However, log(A) and ω values should be obtained first. Scatter plot of well
test derived effective permeability and the calibrated permeability is plotted. A good
correlation indicates probably the time limits are correct.

N4 Users should investigate using anisotropic annular regions. One might also be in-
terested in exploring the effect of anisotropy on the calibrated optimal parameter
pairs.
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Parameters for SWSPCALI

***********************

START OF PARAMETERS:

../workdir/ref2d.dat -file with ln(k) data

2 -column for ln(k) data

../workdir/wtperm2d.out -file of effective permeability data

1 6 -columns for time and keff

../workdir/swspcali2d.err -file for output of errors

../workdir/swspcali2d.out -file for output of keff and weighted averages

1 -index for outputting weights

../workdir/kweight2d.out -file for output of kernel weights

64 50.0 100.0 -X grid size: nx, xmn, xsiz

64 50.0 100.0 -Y grid size: ny, ymn, ysiz

1.0 1.0 -correlation length in x and y directions

0.0 -angle of anisotropic direction

38 38 0.33 -well location i,j, and radius (ft)

2.32 3.8 -log(time_min) and log(time_max)

0.0 1.0 25 -log(A)_min, log(A)_max, nstep_A

-0.5 0.5 25 -omega_min, omega_max, nstep_o

1 53 2.0698 -nsim, nstep,geometric mean of k

2 -interval of keff for calibration

15 1.4 0.3 0.2 20 5.5e-5 -rate,B,visco,poro,thick,comp

0 -option for using quick pick parameters

0 0 -quick pick for log(A) and omega

Figure 3.58: Parameter file for swspcali.

S4 Generate fine scale model with simulated annealing technique. (Model Building Phase)

So far, we have calibrated the optimal parameters and obtained the power-law av-
eraged permeabilities. Now, fine scale permeability distributions can be obtained
conditioned to calibrated permeabilities, reference histogram, variogram, and other
conditioning secondary data. Integration of unaccounted soft data can also be done
at this stage. The program, swsasim, is used for model generation. The parameter
file for swsasim is shown in Figure 3.59.

For the present exercise, we have only reference histogram and variogram and the
well test derived permeability. Unequal weights can be assigned to each of these data
based on the information content and our conviction. Annealing schedule can be set
automatic or manually. If set manually the parameters required are: initial tempera-
ture, reduction factor, maximum number of perturbations at any given temperature,
target number of acceptable perturbations, the stopping number, and a low objective
function value for convergence check. These values are set to 0.0, 0.05, 12, 3, 6 and
0.001 respectively. Number of lags for variogram calculation is fixed to be 15. For well
test data, optimal log(A) and ω are derived earlier in the calibration phase to be 0.12
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and -0.42 respectively. As earlier, circular annular region and isotropic permeability
field are considered. The reservoir and fluid parameters will be same as before.

The response can be plotted by pixelplt or any other appropriate plotting program.
A point to be noted, responses obtained using simulated annealing technique tend
to have a higher nugget effect than desired. This is a limitation of the annealing
technique. One way to improve the responses is to adjust the weights of different data
giving a low weight to well test data, and also adjust the number of variogram lags.

N5 Users are encouraged to try different weights to various objective functions, or
incorporating other secondary data if available to examine the variations in the
generated realizations.

Parameters for SWSASIM

**********************

START OF PARAMETERS:

1 1 0 0 0 0 1 -components: hist,varg,ivar,corr,cpdf,csag,wtke

1 0.5 1 1 1 1 0.5 -weight: hist,varg,ivar,corr,cpdf,csag,wtke

0 -0=no transform, 1=log transform

2 -number of realizations

64 50.0 100.0 -grid definition: nx,xmn,xsiz

64 50.0 100.0 -grid definition: ny,ymn,ysiz

1 0.5 1.0 -grid definition: nz,zmn,zsiz

46069 -random number seed

3 -debugging level

..\workdir\sasim2d.dbg -file for debugging output

..\workdir\sasim2d.out -file for simulation output

1 -schedule (0=automatic,1=set below)

0.0 0.05 12 3 6 0.001 -schedule: t0,redfac,ka,k,num,Omin

30 0.1 -max num of perturbations, reporting interval

400 -max num without a change

0 -conditioning data:(0=no, 1=yes)

****** -file with data

1 2 0 3 -columns: x,y,z,attribute

-1.0e21 1.0e21 -trimming limits

1 -histogram:(0=no, 1=yes)

..\workdir\ref2d.dat -file with histogram

2 0 -column for value and weight

99 -number of quantiles for obj. func.

1 -number of indicator variograms

2.78 -indicator thresholds

****** -file with gridded secondary data

1 -column number

0 -vertical average (0=no, 1=yes)

0.60 -correlation coefficient

****** -file with paired data

2 1 0 -columns for primary, secondary, wt

-0.5 100.0 -minimum and maximum

1 -number of primary thresholds

1 -number of secondary thresholds
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15 -variograms: number of lags

1 -standardize sill (0=no,1=yes)

2 0.0 -nst, nugget effect

1 0.5 0.0 0.0 0.0 -it,cc,ang1,ang2,ang3

900.0 1400.0 1.0 -a_hmax, a_hmin, a_vert

3 0.5 0.0 0.0 0.0 -it,cc,ang1,ang2,ang3

1500.0 3200.0 1.0 -a_hmax, a_hmin, a_vert

0 12 -itemp (0=global update, 1=local update),ntmp

2 2 -ltail option for local ccdf

1 1 -middle option for local ccdf

2 0.5 -utail option for local ccdf

****** -coarse grid field

20 100.0 200 -coarse grid definition: nxcs,xmncs,xsizcs

20 100.0 200 -nycs,ymncs,ysizcs

1 0.5 1. -nzcs,zmncs,zsizcs

1 1 -omega power;id_csavg to conform k_avg at initial

..\workdir\wtperm2d.out -well test effective permeability data file

1 6 -columns for time and keff

0.12 -0.42 -log(A) and omega_wt (optimal from calibration)

38 38 0.33 -location of testing well and radius (ft)

1.0 1.0 -correlation length for anisotropic annular

0.0 -angle for anisotropic annular

2.32 3.8 -min and max Log(t) in well test

15 1.4 0.3 0.2 20. 5.5e-5 -flowrate,fvf,visco,poro,thick,compress.

Figure 3.59: Parameter file for swsasim.

S5 Users should perform well test simulation using the generated realizations to compare
the real well test pressure transient data.

S6 Suggested sensitivity analyses.

� It is often difficult to get a good variogram model. One logical sensitivity study
can focus on variogram structures. With different variogram models, the entire
process can be repeated and uncertainty due to variograms can be estimated.

� In the interpretation stage, one has to decide on the time limits. Different time
limits can be used and the subsequent steps performed to evaluate uncertainty
due to the time limits.

� Sensitivity to initial pressures, fluid properties, reservoir dimensions can be per-
formed. It should be noted that reservoir dimensions can be quite important
inasmuch as small domain can lead to boundary effects masking the infinite-
acting flow period.

� Sensitivity to volume of averaging of different shapes, and also to anisotropic
permeability field can be analyzed.



Chapter 4

Multiple Well - Single Phase

This chapter discusses integration of multiwell single-phase flow data. Data provided by
permanent pressure gauges, simultaneous multiple well tests, or reservoirs under primary
depletion are considered. A slightly different approach, from that discussed for single well
single phase case, is applied for the integration. Spatial constraints are first established on
large-scale permeability trends due to the production data. Detailed geostatistical models
are then constructed subject to these spatial constraints.

Production data and reservoir petrophysical properties are nonlinearly related through
flow equations. Establishing the constraints on permeability due to production data calls
for the solution of a difficult inverse problem. A recently developed inversion technique, the
sequential self-calibration (SSC) method, is adapted to multiple-well single-phase pressure
transient data. This is a geostatistics-based iterative method, coupled with an optimization
procedure that generates a series of coarse grid 2D permeability realizations, which repro-
duce the production data. Results with synthetic data indicate that the SSC method is
flexible, computationally efficient, and robust. An annealing-based geostatistical technique
is employed to construct fine scale reservoir models integrating the coarse scale permeability
obtained from the SSC inversion.

4.1 Background

Highly nonlinear flow equations must be solved to establish the relationship between pro-
duction data and reservoir properties. Consequently, accounting for dynamic engineering
data in geostatistical reservoir modeling is a difficult inverse problem. Nevertheless, from
the perspective of a reservoir engineer, historical production data are often the most im-
portant information available. These dynamic data provide a direct measurement of the
actual reservoir response and are directly related to the recovery process and the response
variables.

Ideally, all types of production data could be directly accounted for in the reservoir model
at the required resolution simultaneously with other types of geological and geophysical
data. The production data would then be explicitly reproduced in the reservoir model.
This direct integration is not feasible because of the following reasons. The mathematical
inversion of the flow equations is computationally intensive requiring many solutions to the

79
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flow equations. Consideration of multiphase production data further limits the size of the
model. Furthermore, it is difficult to simultaneously match production data with other
static geological and geophysical data.

The coarse grid models constructed by direct inversion techniques are usually inadequate
for reliable production forecasting. In many practical situations, while keeping models
as simple as possible, highly-resolved models of lithofacies, porosity and permeability are
desired. This two-stage inversion is suitable for such problem.

Section 4.2 describes the sequential self-calibration (SSC) method in greater detail for
application to single-phase production data from multiple wells. The application of SSC
to a number of synthetic data sets, with the utility and robustness of the method, is doc-
umented in Section 4.3. Section 4.4 introduces an annealing-based geostatistical technique
to construct fine-scale geostatistical models conditioned to the 2D coarse grid permeability
models obtained by the SSC method.

4.2 The Sequential Self-Calibration (SSC) Method

The available production data include pressure pi(t) and flowrate qi(t) with time t at a
number of wells i = 1, ...nw. The goal is to find a set of permeability and porosity values
for each numerical cell in a reservoir model that matches the observed pressure data under
the given flowrate conditions. This match is established by solving the flow equations:

∇(
kh

μ
∇p) + q = hcφ

∂p

∂t
(4.1)

where k is permeability, φ porosity, μ viscosity, h the thickness of the reservoir, and c
formation compressibility. The closeness of the pressure match may be quantified by an
objective function:

O =
∑

i

∑
t

(
pobs

i (t) − pcal
i (t)

)2
(4.2)

where pobs
i (t) is the observed pressure data at well i at time t, and pcal

i (t) is the numerically
calculated pressure at well i at time t.

The SSC method is an iterative geostatistics-based method coupled with an optimization
procedure [22, 74]. Like most geostatistical approaches, the SSC method generates multiple
equally-likely realizations of permeability honoring different types of static and dynamic
field data. The realizations created by the SSC method honor a specified spatial variation
structure as modeled from the field data. Dynamic pressure data at multiple wells are
also honored in the sense that the solution of the flow equation in each of the generated
realizations matches the measured pressure values at the same well locations.

The unique aspects of the SSC method are (1) the concept of master points that reduces
the space of parameters, (2) a perturbation mechanism based on kriging that accounts for
spatial correlation of parameters, and (3) fast computation of sensitivity coefficients. The
combination of these features makes the SSC method flexibly, robust and computationally
very efficient. As an overview, the method can be described by the following steps (see also
Figure 4.1):
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Figure 4.1: Flowchart of the Sequential Self-Calibration method.

Construction of initial realizations: Multiple, initial permeability realizations are cre-
ated by conventional geostatistical techniques constrained to all static (hard and soft)
data and the specified permeability histogram and variogram. Each realization is
processed one at a time with the following steps.

Solving the flow equations: For the current model, the flow equations are solved using
the specified boundary and production rate conditions. A block centered finite dif-
ference method with a direct matrix solver is used to solve the flow equations in this
study. Other numerical methods can also be used for this purpose.

Mismatch calculation and convergence check: The difference in the observed and cal-
culated pressure values at the available wells and at the given time is computed in
some norm sense. If the difference is smaller than a preselected tolerance value, this
permeability realization is considered to honor the dynamic pressure data and the
procedure stops. Otherwise, the algorithm proceeds to the next step.

Selection of master points and solution of the optimization problem: Master
points are selected randomly but with a criterion of having about one to three master
points per correlation range of permeability variogram depending on the complexity
of the problem. However, all the well locations with permeability data are included
as the master points. In some cases, more master points are added in the vicinities of
the well to better resolve some scale details. An optimization problem is then solved
to find the optimal perturbations of permeability at the master point locations. The
optimal perturbations minimize the difference between the observed and calculated
pressures. The master point concept reduces the space of parameters to be optimized,
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Figure 4.2: The schematical illustration of perturbation precess used in the SSC method using a
1D example.

which significantly improves the computational efficiency of the method. To achieve
better results, the locations of master points are changed after each specified number
of iterations so that the optimization process can search broader range of parameter
space without increasing the computer time considerably.

Propagation of the optimal perturbations: The optimal perturbations for the master
points determined in the previous step are propagated through the entire field by
kriging. The permeability field is updated by adding the smooth perturbation field
to the previous permeability field (see Figure 4.2). The variogram, used to generate
initial models, is used to propagate the permeability perturbations at master points.
This preserves the original spatial variation patterns in the permeability field.

Outer iteration: The algorithm loops back to the step “Solving the flow equations”.
The cycle is repeated until the convergence is achieved. Typically, fewer than 20
iterations are required.

Sensitivity coefficients (derivatives of pressure with respect to the perturbation of per-
meability values) at all master point locations at each time step are needed when solving the
optimization problem using gradient-based methods. The efficient calculation of sensitivity
coefficients has received significant attention in the literature [39, 47, 120, 141]. An efficient
method of obtaining the required sensitivity coefficients is applied here as part of the flow
solution.

Discretization of the flow equation (4.1) using an implicit scheme leads to the following
equation in matrix notation:

[A]{p}t+1 = [B]{p}t + {f}t (4.3)
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where [A] is the transmissibility matrix which accounts for spatial and time discretizations,
as well as boundary conditions, [B] = [hcφ]/ � tt+1, and {f}t is the right hand side matrix
that accounts for the load vector (production or injection) and flow boundary conditions.
The solution of pressure at time t + 1 is obtained by inverting matrix [A], that is,

{p}t+1 = [A]−1[B]{p}t + [A]−1{f}t (4.4)

The sensitivity coefficients at time step t + 1 are calculated right after the pressure at time
t + 1 is obtained. The perturbation of parameter km can be written as:

[A]
∂{p}t+1

∂ � km
+

∂[A]
∂ � km

{p}t+1 =
∂[B]

∂ � km
{p}t + [B]

∂{p}t

∂ � km
+

∂{f}t

∂ � km
, m = 1, . . . , nm

(4.5)
where nm is the total number of master points, thus,

[A]
∂{p}t+1

∂ � km
=

∂[B]
∂ � km

{p}t + [B]
∂{p}t

∂ � km
+

∂{f}t

∂ � km
− ∂[A]

∂ � km
{p}t+1, m = 1, . . . , nm

(4.6)
Equation (4.6) has the same form as Equation (4.3) and the matrix [A] has just been
inverted when solving for the pressure {p}t+1. The sensitivity coefficients can be obtained
at the same time step t + 1 by simple matrix operations, that is,

sm,t+1 =
∂{p}t+1

∂ � km

= [A]−1[B]
∂{p}t

∂ � km
+ [A]−1 ∂[B]

∂ � km
{p}t + [A]−1 ∂{f}t

∂ � km
− [A]−1 ∂[A]

∂ � km
{p}t+1,

m = 1, . . . , nm

(4.7)
The elements of matrices, ∂[A]

∂�km
, ∂[B]

∂�km
, and ∂{f}t

∂�km
can be directly computed from the

expressions of elements in matrices [A], [B] and {f} with ∂{p}0

∂�km
= 0. The efficient calculation

of sensitivity coefficients has received significant attention in the literature. Other methods
can be found in the literature [39, 47, 120, 141].

A modified gradient projection method is then used to obtain the optimal perturbation
values at the selected master locations by minimizing the objective function. The objective
function given in Equation (4.2) can be written in the following matrix form:

O = O({pcal}) =
nt∑

t=1

({pcal}t − {pobs}t)T [Wp]t({pcal}t − {pobs}t) (4.8)

where {P cal}t = {pcal
t,1 , pcal

t,2 , ..., pcal
t,nw

}T and {P obs}t = {pobs
t,1 , pobs

t,2 , ..., pobs
t,nw

}T are the
numerically calculated and observed pressures at well i = 1, ..., nw and time t = t1,
..., tn. [W ]t is the inverse covariance matrix of observation errors at time t. If pressure
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measurement errors at different wells are independent, [W ]t is a diagonal matrix with the
form of

[W ]t =

⎡
⎢⎣

w1,t

. . .
wnw,t

⎤
⎥⎦ (4.9)

Objective function (4.8), a non-linear function of the model parameters, needs to be
computed (i.e., the perturbations of permeability at master locations, {M} = {Δk1,Δk2,
..., Δknm}T ). Linearization of this objective function is attained by approximating the
pressure data by retaining its first order Taylor expansion, i.e.,

{P cal}1
t ≈ {P cal}0

t +
∂{P}t

∂{M}{M} (4.10)

where {S}t = ∂{P}t/∂{M} = {s1,t, s2,t, ..., snm,t} is the sensitivity vector at time t with re-
spect to the permeability perturbation at location m computed, with sm,t = ∂{P}t/∂{Δkm}.
{P cal}0

t and {P cal}1
t are pressure values at time t before and after introducing a perturba-

tion matrix {M}. Using this linear approximation, after some manipulation, the objective
function (4.8) can be rewritten as following:

O({pcal}1) = O({pcal}0) +
nt∑
t=1

{D}T
t {M} +

nt∑
t=1

{M}T [C]t{M} (4.11)

where the matrices {D}t and {C}t are expressed as follows:

{D}t = 2
(
{pcal}t − {pobs}t

)T
[W ]t{S}t (4.12)

{C}t = ({S}t)
T [W ]t{S}t (4.13)

The constraints used for minimizing the objective function (4.11) are simply the possible
minimum and maximum values of perturbations, i.e.,

{Δkmin} ≤ {M} ≤ {Δkmax} (4.14)

that is,
[I]{M} ≤ {Δkmax}
−[I]{M} ≤ {Δkmin} (4.15)

where [I] is a nm × nm identity matrix, {Δkmin} = min{k0, kkrig −ασkrig} and {Δkmax} =
max{k0, kkrig + ασkrig}. {k0} is the vector of permeability values at master points in
the initial field, {kkrig} and {σkrig} are kriging estimations and the corresponding kriging
standard deviations at the master points based on available measured permeability data.
If there is no prior k measurements, {kkrig} and {σkrig} can be selected as the mean and
standard deviation of the desired permeability histogram. α is a constant value that specifies
the interval size of the constraints.

The above formulation is a standard quadratic optimization problem. In the current
SSC code, this optimization problem is solved using a modified gradient projection method
to take advantage of the simple expression of constraints expressed in equation (4.15). At
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each iteration of the optimization process, the search direction is obtained by projecting
the gradient of the objective function on the null space of the gradients of the binding
constraints [73].

It should be noted that the application of the SSC method requires information on
the distribution of permeability at the scale of the numerical grid (histogram and vari-
ogram). Also it assumes that the permeability variation in entire model is governed by a
single histogram and a single variogram model, which may limit its application when the
permeability variations in a reservoir are due to the mixture of multiple populations (e.g.,
controlled by multiple lithofacies or channel objects), or when there are discontinuous fea-
tures such as faults, channels, or facies boundaries. Furthermore, there is no direct control
on the reproduction of the variogram in the updated realizations. A posteriori check is thus
needed to ensure that the appropriate inverse results are obtained. Nevertheless, promising
results have been obtained in groundwater hydrology using the SSC method with different
heterogeneity features including the identification of non-multiGaussian features and high
permeability flow channels [187, 188, 195, 204].

4.3 Application of the SSC Method

The SSC method can retrieve important spatial features of permeability from multiple well
production data. This is demonstrated below. A reference permeability model is first
constructed. The dynamic pressure responses, at a number of wells due to changing flow
rates, are then obtained by flow simulation. Based on the dynamic flowrate and pressure
data, and information on the spatial variation structure of permeability, the SSC method
is used to invert for permeability fields that match the production data. The inverted
permeability fields are compared with the reference field to assess the capability of the SSC
method.

A 2D, 4000 ft square, domain of interest is discretized into 25 × 25 grid cells 160 ft ×
160 ft. There is a high permeability (500 md) band connecting the lower-left corner and
upper-right corner. The permeability in other areas is constant at 10 md (see Figure 4.3).
There are four wells: W1 at the center of cell (5,21), W2 at (21,21), W3 at (5,5), and W4
at (21,5). The four boundaries are no-flow boundaries, porosity is assumed constant at 0.2,
reservoir thickness is 100 ft, viscosity 0.2 cp, formation compressibility 10−6 1/psi, and well
radius 0.3 ft.

The imposed production rates and the corresponding pressure responses at the different
wells were solved by Eclipse [101] and are shown in Figure 4.4. The reason for the different
shut-in times is to create as much between-well interference as possible. This reveals more
information on spatial variations of permeability by the available production data. Clearly,
the hydraulic connection between wells W2 and W3 is stronger than that between other
well pairs.

The SSC method is used to estimate the spatial distribution of permeability within
the domain using the same discretization based on the production and pressure data at
the four wells. Initially, a constant permeability with k = 2 md is assumed at all cells.
An anisotropic variogram with very long correlation length in the 45 degree direction is
assumed to be accessible from other information. The sensitivity of the inverted results on
the selection of the anisotropy and initial k model will be studied later.
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Figure 4.3: Reference deterministic permeability field. ln(k) is the natural logarithm of perme-
ability.

The pressure responses in the updated permeability field converge to the measured
pressure data after 20 iterations (5 minutes in a SGI workstation). Figure 4.5 shows the
resulting updated permeability field. The spatially connected high permeability band con-
necting wells W2 and W3 is seen clearly. Figure 4.6 shows the pressure values at the four
wells computed from the initial uniform permeability field and from the final updated per-
meability field together with the results from the reference field. These responses in the
initial field deviate dramatically from the true values, due to the poor initial model. How-
ever, the permeability field updated by the SSC method accurately reproduces the observed
pressure data at all wells.

The information extracted from production data can be evaluated by comparing the
true and estimated permeability values at the same cells. Figure 4.7 shows the distributions
of estimated permeability values in high and low permeability regions, respectively. As no
prior information on the permeability values was available before accounting the production
data, the information obtained on the permeability distribution is quite significant. More
importantly, the spatial distribution patterns of permeability are revealed (see Figure 4.5),
which cannot be represented by the histograms on Figure 4.7.

It is difficult to obtain the correct variogram parameters, i.e., anisotropy angle and cor-
relation length. Influence of these variogram parameters on inverse results is investigated.
Sensitivity of the initial permeability values and the number of master points on the inver-
sion results is also explored. Figure 4.8 shows the inverted permeability fields using different
variogram parameters and different initial permeability values. The high permeability band
is always obtained, indicating the robustness of the SSC method.

Production data were computed from coarse grid models in this example. SSC method
was used to invert the permeability fields on the same coarse grid. This does not give
reasonable flow responses and is rightly avoided in practice. The coarse grid models may be
too coarse to provide realistic reference production data. A more realistic approach would
be to create synthetic production data by solving the flow equation on a fine grid model.
However, it is practically too expensive to directly invert permeability on the same fine
scale, used to create production data. Therefore, the idea is to use a coarser model for the
production data inversion. Then the coarse model inversion responses serve as constraints
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Figure 4.4: The production data (production rates and pressures) obtained from the reference
field.
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Figure 4.5: Final SSC-derived permeability field honoring pressure data from reference permeabil-
ity field (see Figure 4.3).
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Figure 4.6: The pressure responses computed from initial (bullets) and updated (open circles)
permeability fields together with the true data (solid lines).
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Figure 4.7: The histograms of updated permeability values in (a) high and (b) low permeability
regions of the reference field. The bullets represent the true values in the reference field.

in constructing fine scale models.

4.3.1 Inversion of Pressure Data on Coarse Model

In the previous example, the production data were computed from a coarse grid reference
model and the SSC method was used to invert permeability fields on the same coarse grid.
This would not usually be the situation in field applications since simulation is usually done
on a coarse scale. A more realistic test is to have the synthetic production data generated
from simulation using a fine grid reference model. Then the inversion technique is used
to create coarse grid models, which are subsequently used as spatial constraints for the
construction of high resolution reservoir models (i.e., the two-stage approach, see Figure
4.9). An outstanding issue is to check that the matching of production data at the coarse
grid model is preserved at the final fine grid model.

In the example, a 4000 ft × 4000 ft 2D square domain was discretized into 100 × 100
fine grid with cell size of 40 ft × 40 ft. A reference permeability model (see Figure 4.10a)
at this fine scale was generated using sequential Gaussian simulation, sgsim (GSLIB, [61]).
The mean and variance of ln(k) were 3.0 and 3.0, respectively. The variogram model used
to generate this reference field was anisotropic spherical, with correlation ranges of 1700
ft and 350 ft in the two principal directions. A coarse grid model (20 × 20) scaled up by
geometric averaging from the reference field is shown in Figure 4.10b. This scaled-up coarse
grid model is later used for visual comparison with the inverse coarse grid results.

Three wells (W1, W2, and W3) located at the center of fine scale cells (58, 88), (13, 43)
and (88, 33) producing oil with varying production rates, analogous to the first example,
and the corresponding pressure responses are shown in Figure 4.11. Wells W2 and W3
were connected by relatively high permeabilities, whereas well W1 was located in a low
permeability region. Other parameters used in solving the flow equation for pressure on the
fine (100 × 100) were the same as in the previous section.

Applying the SSC method, the coarse grid (20 × 20) permeability realizations are gen-
erated for which flow simulation matches the production data. Figure 4.12 illustrates three
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Figure 4.8: Inverse permeability fields from the SSC method by using different variogram param-
eters and different initial values.
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Figure 4.9: The schematic representation of the two-stage inversion technique.
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Figure 4.10: (a) The reference permeability field at fine scale, and (b) and the scaled up coarse
grid permeability model: the second example.
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Figure 4.11: The production data (rates and pressures) obtained from the reference field at fine
scale: the second example.
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initial coarse scale permeability realizations generated using sgsim, and the corresponding
three updated realizations by the SSC method. The statistics of the reference coarse grid
model (Figure 4.10b) are used for generating these realizations (i.e., mean and variance of
ln(k) are 3.0 and 2.03, respectively; correlation lengths are 1800 ft and 400 ft in X− and
Y − directions, respectively). Large differences are apparent among the initial realizations
all of which deviate significantly from the reference coarse grid model. However, the spatial
variation patterns in the updated realizations are much closer to the reference field, yet the
difference from realization to realization is much smaller compared to the initial realizations.
Figure 4.13 shows the pressure responses computed from a typical initial realization and its
corresponding updated permeability realization compared with the true pressure data. The
true pressure response is reproduced with high accuracy by the updated field, whereas the
initial field’s pressure responses deviate significantly from the true data.

Three hundred coarse-grid realizations were generated using the SSC method, from
which the ensemble mean and standard deviation fields were computed and compared with
the 300 initial fields (Figure 4.14). Figure 4.14 shows the reduced standard deviation (i.e.,
uncertainty) from the updated fields, particularly in the areas around the wells. Even away
from the wells, the updated fields have lower standard deviations.

4.4 Construction of Fine Scale Permeability Models

A series of equiprobable realizations of coarse grid permeability fields can be generated
using the SSC method. All of these realizations share the same histogram, variogram and
production data. However in practice, more detailed geostatistical models are required for
flow simulation predictions of reservoir performance. In this section, the promise of the
two-stage approach to integrate production data is demonstrated using the SSC results of
the first stage. Construction of fine scale models that honor the coarse grid realizations is
a problem of downscaling.

Simulated annealing is one method that can construct fine scale permeability models
based on the coarse grid realizations, as well as honor information on the histogram and
variogram of fine scale permeability [55]. The first approach was to use annealing technique
with an additional component to the objective function to represent the difference between
the coarse grid permeability values and the power averages of fine scale permeabilities within
the same coarse block, i.e.,

Omw =
ncg∑
i=1

[
kv(ui) − k

∗
v(ui)

]2
(4.16)

where ncg is the number of blocks on coarse grid model, kv(ui) is the inverse permeability
value at coarse block ui, and k

∗
v(ui) is the ω power average of fine grid permeability values

within the coarse block ui, which is given as:

k
∗
v(ui) =

⎡
⎣ 1

N

∑
ui∈V

k(ui)ω
⎤
⎦

1/ω
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Figure 4.12: Three initial permeability realizations and the corresponding updated fields from the
SSC method.
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Figure 4.13: The pressure responses computed from the typical initial and updated permeability
fields together with the true data in a typical realization: the second example.
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Figure 4.14: The ensemble averaged permeability field and the corresponding standard deviations
from 300 initial and updated realizations: the second example.
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Figure 4.15: Two realizations of fine grid models, constructed by the simulated annealing method,
that honor the coarse grid models generated by the SSC method shown on the left-hand side.

where N is the number of fine grid within a coarse block V . Different fine grid perme-
ability models can be constructed, each of which matches the corresponding coarse grid
permeability realization.

Figure 4.15 depicts two realizations of fine grid (100 × 100) permeability generated
by this annealing technique and compared with the corresponding coarse grid (20 × 20)
images from the SSC inversion in the second example. The histogram and variogram used to
construct the fine grid models were taken from the fine grid reference model and geometric
averaging (ω → 0) was used. Other types of data, e.g. seismic data, could also be honored
at this stage.

In order to check if the fine grid permeability models still reproduce the dynamic pro-
duction data, the pressure responses at the wells were solved on the fine grid models of
Figure 4.15. Figure 4.16 shows the results (open circles) compared to the true responses
from the reference field (solid lines) and the responses from the coarse grid model (bullets).
The pressure responses are closely reproduced in the annealing-based fine grid permeability
models. This indicates the promise of the two stage geological coding approach to integrate
production data.

An alternative and more sophisticated approach for constructing fine grid models using
the coarse grid spatial representations is to compute local conditional distributions of coarse
grid permeability at each coarse grid block, then use simulated annealing to construct
fine grid models integrating these probability constraints of the coarse grid values [61].
Nevertheless, the simpler approach presented above may see more extensive use in practice.
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Figure 4.16: The comparison of pressure responses computed from fine and coarse grid models
shown on the top of Figure 4.15 to the true results.
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4.5 Performance Prediction Improvement by

Dynamic Integration

The importance of integrating production data is exhibited by predicting the reservoir
performance in Example 2 using two sets of fine scale (100 × 100) geostatistical models:
one generated by sgsim not accounting for the production data, the other generated by
simulated annealing accounting for the coarse-scale spatial representations derived from the
production data as discussed previously. Two realizations of the second model are shown
in Figures 4.15b,d. At 120 days, a water injection well located at the center of cell (50,
49) begins injecting water at constant rate of 20000 STB/day (see Figure 4.15). The three
wells (W1, W2, and W3) are producing with constant pressure of 1000 psi. Although
this example is for a multiphase situation, it was considered suitable in this context as
permeability inversion was performed with the single-phase inversion formulation.

The comparisons of predicted total produced oil and water cuts in three wells (W1,
W2 and W3) from 30 realizations of both models are shown in Figures 4.17 and 4.18,
respectively. The true results computed from the reference fine-scale model are plotted
as the thick, light curves. It is evident that the reservoir models, not conditioned to the
production data overestimate oil production rates, severely overestimate water cuts at W1
but underestimate water cuts at W2 and W3 with large uncertainty. When the production
data are integrated, the predicted performance is much closer to the true results with
significantly less uncertainty. The low permeability barrier in the reference find grid model
between the injection well and W1 is not well captured in the inverse coarse grid models.
Also the variogram distance between the injection well and W1 is larger than other well
pairs, thus there are more permeability variations between these two wells. These may
explain why the predictions in W1 are so much away from the true results compared to the
results at W2 and W3.

Figure 4.19 shows the histograms of total oil production rates of the entire field (Figures
4.19a,b), as well as the water cuts at individual wells (Figures 4.19c-h) from 200 uncondi-
tioned and conditioned models when the injected water is at pore volume injected (PV I)
of 1.0. The true values from the reference field are shown in the same figure by bullets. The
accuracy and uncertainty of forecasting are large using the models in which production data
are not integrated, whereas integrating production data shows significant improvement in
forecasting results in terms of accuracy and uncertainty.

4.6 Application to Facies Modeling

Integration of well production data in numerical geological modeling improves the reliability
of reservoir forecasting. A methodology to derive facies proportion maps from multiple-well,
single-phase, production data is presented here. SSC method is used to generate a series
of coarse scale permeability maps from the production data. These permeability maps are
then converted into facies proportion maps according to a calibration relationship between
facies proportion and effective block permeability.

The facies proportion maps can be used with well petrophysical data, conceptual and
descriptive geologic models, and geophysical data to create fine scale geostatistical reservoir
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Figure 4.17: The total oil production rates at the producing wells from 30 unconditioned (left)
and conditioned (right) realizations. The thick light curves are results from the reference true field.
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Figure 4.18: The water cuts at the producing wells from 30 unconditioned (left) and conditioned
(right) realizations. The thick light curves are results from the reference true field.
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Figure 4.19: The histograms of total oil produced (a, b) and water cuts at three wells (c-h) from 200
unconditioned (left) and conditioned (right) realizations when the injected water is at PV I = 1.0.
Bullets are the true results from the reference field.
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models for reservoir management. The production data are thus honored indirectly in the
final reservoir models, which reduces the need for extensive history matching.

Single-phase production data are used to infer reservoir facies proportions from the
interpreted permeabilities. These single-phase production data are observed in primary
depletion or before water breakthrough. Data considered are flowrate qi(t) and pressure
pi(t) as a function of time, t, at any arbitrary number of well locations, i = 1, . . . , ni. It
should be noted that multiphase flow production data may be more important in many
situations and can be addressed by a similar technique.

Application of SSC inversion provides multiple coarse-scale maps of permeability that
reproduce the available rate qi(t) and pressure pi(t) data. Figure 4.20 gives a schematic
illustration of the concept, that is, the temporal pressure and rate information at the well
locations are inverted to a spatial description throughout the reservoir.

The permeability maps provide constraints on the distribution of facies derived by in-
tegrating other geological and geophysical data. The production data derived facies pro-
portion constraints are limited to two “lumped” petrophysical facies: one low permeability
facies and one high permeability facies. Considering more than two facies leads to ambigu-
ous results.

A calibration approach is necessary to relate coarse-scale permeability to facies propor-
tions. Fine scale facies models are first constructed with spatially variable proportions of
high and low facies. The effective permeability is calculated by flow simulation for coarse-
scale blocks. Then, a cross plot between facies proportion and effective permeability is
constructed. For a given coarse-scale permeability value, the conditional distribution of as-
sociated facies proportions can be extracted. The higher the permeability, the greater is the
proportion of high-permeability facies. Figure 4.21 gives a schematic illustration of a cali-
bration cross plot and the facies proportion distribution for a coarse-grid block permeability
of 100 md.

The facies proportion maps are constructed by merging the coarse scale permeability
maps obtained from the SSC inversion and the calibration relationship. There are L perme-
ability values (ki, i = 1, . . . L) for each coarse block from as many realizations derived from
the SSC inverse method. For each of these permeability values, all possible facies propor-
tions are retained that fall within a narrow window, [ki −Δk, ki + Δk], from the calibrated
relationship of facies proportion (P j

i , j = 1, . . . , Ni) and effective permeability. All facies
proportion values are then combined into a histogram of possible facies proportions at each
location. The local distributions of facies proportions may be summarized by local mean
and variance values.

There are two sources of uncertainty in the facies proportion maps. First, the effective
permeability inferred from the production data is non-unique. It is not possible to uniquely
determine the permeability everywhere using limited production data. However, useful
spatial trends and information around the well locations can be extracted. Second, as
illustrated on Figure 4.21, the calibration of facies proportion to effective permeability is
also non-unique. Both of these sources can be quantified allowing to create a map of the
expected facies proportion and the associated uncertainty in facies proportion.

The coarse-scale facies information derived from production data could be used as a
production-data based check on a conventional or geostatistically derived facies model de-
veloped from core, seismic and well log data. It is, however, better to use the facies propor-
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low permeability.
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Figure 4.21: A schematic illustration of the calibration between permeability and facies proportion.
The conditional distribution of facies proportion given k = 100 is shown.

tion maps as an input data to build high resolution 3D facies models. These models can be
constructed by a variety of geostatistical techniques.

Applications of the methodology are demonstrated in the following sections using syn-
thetic data sets. The sensitivity of results on the distributions of facies permeability is also
investigated.

4.7 A Fluvial Reservoir Example

A fluvial reservoir, dominated by the distribution of high permeability channel sand within a
background of low permeability floodplain shales, is considered. The reference facies model
was constructed by fluvsim [63]. An isometric view of the reference model is shown on
Figure 4.22. The permeability of the fluvial channel sand and floodplain shale are constant
1000 md and 1 md, respectively. Historical production data were simulated using three well
locations shown on the 3D fine-scale model (W1, W2, W3 on Figure 4.22). The rate and
pressure data (see Figure 4.23) are used to infer the proportion of channel sand facies.

A 2D map of the reference sand proportion and the upscaled permeability are shown on
Figure 4.24. The global proportion of channel sand in the model is 0.50. The cross plot of
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Figure 4.22: An isometric view of the reference fluvial model. The high permeability fluvial channel
facies (darker color) are embedded within low permeability floodplain shales.

the sand proportion versus coarse-scale permeability (see Figure 4.25) is used for calibration
only.

Based on the simulated production data and the histogram and variogram of the coarse
scale permeability values, the SSC method was used to construct multiple realizations of
coarse scale permeability. Figure 4.26 shows the first four realizations in which the pro-
duction data are matched. The pressure match for one realization is given in Figure 4.23.
Two hundred realizations of coarse scale permeability were constructed. To summarize the
results, the ensemble averaged permeability field and the corresponding variance field are
shown on Figure 4.27.

The sand proportion for each coarse block can then be computed using the procedure
described in Section 4.6. The relationship between permeability and facies proportion (Fig-
ure 4.25) has little spread. Therefore, the sand proportion maps look very similar to the
permeability maps. After conversion, Figure 4.28 shows the ensemble mean proportion
and a cross plot of the true proportion and estimated proportion. The regions of low and
high sand proportion have been identified, although there are regions of indeterminate sand
proportion.

In order to show the value of more production data, the entire procedure was repeated
using the production data from 20 wells instead of the original 3 wells. An SSC inversion
realization, the cross plot between the true sand proportion and the estimated sand pro-
portion, and the final ensemble mean and variance of the sand proportion are shown in
Figure 4.29. Higher correlation coefficient clearly indicates the added value of using more
production data: more accuracy with less uncertainty.

4.8 Another Example - Carbonate Reservoir

The facies in this example have less spatial structure and less certain distributions of perme-
ability. The 2D reference distributions of facies and permeability are shown on Figure 4.30.
The “patchy” spatial distribution of facies is more representative of a reservoir with a strong
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Figure 4.23: Production rates and pressure responses at the three wells. The pressure match for
one permeability realization generated by the SSC method is also shown by bullets on the right-hand
side figures.
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Figure 4.24: Proportion of sand from the reference model and the upscaled coarse-scale perme-
ability field (used for calibration only - historical production data taken from fine-scale model).
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Figure 4.25: Cross plot of sand proportion and upscaled permeability.

4.50
    
    
    
    
    
    
    
    
6.50
Ln(K_coarse)

Updated Ln(K_coarse) Field: Realization 1

W1

W2

W3

4.50
    
    
    
    
    
    
    
    
6.50
Ln(K_coarse)

Updated Permeability Field: Realization 2

W1

W2

W3

4.50
    
    
    
    
    
    
    
    
6.50
Ln(K_coarse)

Updated Permeability Field: Realization 3

W1

W2

W3

4.50
    
    
    
    
    
    
    
    
6.50
 Ln(K_coarse)

Updated Permeability Field: Realization 4

W1

W2

W3

Figure 4.26: Four coarse-scale realizations of permeability that match production data at three
well locations.
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proportion (from 3D fluvial model) and estimated sand proportion (average of 200 realizations).
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Figure 4.29: The results when production data for 20 wells are used. (a) One realization of the SSC
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Figure 4.30: Reference facies and fine-scale permeability distributions for the second example.
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Figure 4.31: Histogram of fine-scale and coarse-scale permeability calculated from reference image.

diagenetic overprint, such as a carbonate reservoir. High permeability facies proportion is
70%.

The base case histograms of permeability in the “high” and “low” permeability facies
are shown on Figure 4.31. The coarse grid histogram of permeability does not show a
bimodal character. Although the high permeability and low permeability modes disappear,
there is still valuable information on the facies proportions. Figure 4.32 shows the reference
coarse-scale facies proportion map and permeability map together with cross plot between
the two - for calibration. This calibration cross plot indicates the dependence of coarse-scale
permeability on the facies.

The procedure, described in Section 4.6, was followed to generate facies proportion
maps. The intermediate coarse scale permeability maps were generated using 3 wells and
20 wells of production data. They were converted to facies proportions using the calibration
relationship. The facies maps were checked for correspondence with the truth, which is
known in this synthetic example. Figure 4.33 summarizes the results by cross plotting the
true proportion and estimated mean proportion using 3 wells and 20 wells of production
data. The correlation between the true and estimated mean proportion is not as good as
the first example, mainly because the facies have a smaller range of correlation. However,
as expected, there is some improvement when there are 20 wells.

The quality of the areal facies proportion maps depends on the histograms of permeabil-
ity in the high and low permeability facies. As a sensitivity case, the inversion/calibration
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Figure 4.32: Reference coarse-scale facies proportion map and permeability map together with
cross plot between the two - for calibration.

was repeated with distributions of permeability that overlap (see Figure 4.34). The cali-
bration cross plot now has more uncertainty (see Figure 4.35). Repeating the procedure
(permeability −→ proportion maps −→ summarize), leads to the results on Figure 4.36.
As expected, the results are systematically poorer than the results from the base case (Fig-
ure 4.33). In the extreme case, with completely overlapping permeability distributions,
there would be no possible facies resolution from the production data alone. This example
also reveals, for a reservoir having significant facies variations at a finer scale, the facies-
specific permeabilities are averaged out at the coarse-scale obtained from the production
data. The estimation of individual facies proportions then is subject to increased error.
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Figure 4.33: Cross plot of true proportion and estimated mean proportion using 3 wells and 20
wells of production data (same well conditions as first example).
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Figure 4.35: Calibration cross plot using the “overlap” distributions of permeability. The calibra-
tion has greater variability than the base case (Figure 4.32).
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Figure 4.36: Cross plot of true proportion and estimated mean proportion using 3 wells and 20
wells of production data using the “overlap” distributions of permeability.
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4.9 Uses for Facies Proportion Maps

The facies proportion maps are directly useful for mapping areas with greater and lesser
pay facies. The resulting maps can be used to guide the location of new wells or to assess
areal sweep efficiency.

The facies proportion maps, obtained by this technique, can also be used as constraints
for creating more detailed geostatistical facies models. There are two primary reasons to
create more detailed geostatistical facies / porosity / permeability models that account for
the production data-derived facies maps. First, there is additional information from seismic
data and detailed well logs and cores that must be accounted for. Second, more refined
reservoir management is possible using reservoir simulation that needs 3D input and local
refinement around wells for reliable predictions. A number of methods can be used to build
more detailed models using coarse-scale information:

1. Multiple Truncations of a Gaussian Field [61, 113, 133, 197] or “truncated Gaussian
simulation” permits the simulation of a categorical variable with an underlying trend.
In practice, the areal and vertical proportion curves used in truncated Gaussian sim-
ulation are established from seismic data or mapping geologic trends. The proportion
maps from production data can be used directly.

2. Sequential Indicator Simulation [3, 61, 75, 109, 111] can directly use production-data
derived proportion maps as prior mean values.

3. Object based modeling techniques [63, 72, 84, 176, 180, 181] consider the production-
data derived proportion maps as so-called “intensity functions” to increase the likeli-
hood of specific facies where the proportion is high.

Most commonly applied facies modeling techniques permit the use of locally varying pro-
portions. This flexibility was added primarily to use seismic data and geological trends.
However, the same flexibility can be adapted to production data-derived proportions.

4.10 Discussion

An outstanding challenge in reservoir characterization is understanding the constraints on
the spatial distribution of facies provided by well production data. The methodology pre-
sented in this chapter provides a tool to guide facies mapping using single phase multiple-
well production data. These data are available in primary depletion and before water
breakthrough, that is, early in the life of a reservoir. A number of important reservoir man-
agement decisions have to be made during these early stages. The methodology, discussed
here, should be very useful. The use of multiphase production data remains an important
and active area of research.

Examples were presented to demonstrate the efficacy of the proposed methodology.
The SSC method establishes multiple realizations of coarse-scale permeability that can
be translated into constraints on the proportion of facies with the aid of a calibration.
Comparison of the results with 3 wells and 20 wells illustrated the value of more production
data and the ability of the method to converge toward the true facies distribution.
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These examples also illustrated some of the limitations of the approach. First, it is
limited to considering two petrophysical facies groups - a low and high permeability facies.
Second, the calibration depends on the overlap of the permeability histograms between
the coarse-scale permeability and lumped facies. The examples also provided some rules-
of-thumb for the conditions to expect reasonably good estimates of the coarse-scale facies
proportion, that is, for a high correlation and low standard deviation between the true pro-
portion and the estimated proportion. The estimates should be reasonably good when both
the core-measured permeability histograms have little overlap and the areal extent of reser-
voir facies is on the scale of the coarse-scale representation. These conditions were present
in the fluvial example. Such conditions will be true for many siliciclastic environments for
which there are large-scale pay and non-pay facies. In addition to fluvial channel systems,
some examples are lower shoreface, deep water channel-levee, and deep water fan-lobe com-
plexes. Finally, it was also shown how the lumped facies proportions can be used to guide
subsequent geostatistical modeling of a greater number of lithofacies.

4.11 Exercise

4.11.1 Problem Setting

We will use the same reservoir data as that used in Chapter 3 for single-well single-phase
inversion. Only number and locations of the wells are different. Again, for simplicity and
applicability of the supplied programs, we restrict ourselves to 2D with a constant thickness
of 20 ft. Areal extent of the reservoir is discretized by a 64 × 64 grid of the dimension 100
ft ×100 ft. Other reservoir and fluid properties are: φ 0.2, B 1.4, pi 1502.008 psia, μ 0.3
cp, and c 5.5 × 10−5 1/psia. Initial reservoir pressure is 1502.008 psia. A reference ln(k)
distribution is available (ref2d.dat). This is usually obtained from static (both hard and
soft) data integration. The mean and variance of ln(k) are 0.73 and 0.6084, respectively.
The reference ln(k) distribution is modeled by a two-structure variogram model with no
nugget effect. The first structure is a spherical model with horizontal ranges 900 and 1400
ft and sill contribution of 0.5, and the other is a Gaussian model with horizontal ranges
1500 and 3200 ft and sill contribution of 0.5. There are 5 wells, located at the center of the
grid blocks: (10,50), (32,40), (40,40), (39,30) and (50,8). Each of these wells has the same
wellbore radius of 0.33 ft. The wells are producing with constant flow rates of 10, 15, 15,
15 and 7.5 (STB/DAY) respectively. No flow boundary is considered.

4.11.2 Steps Through the Multiple-Well Single-Phase Inversion Exercise

S1 Perform forward flow simulation to obtain synthetic well test data.

This step is required only when well test data are not available from any other source.
Program supplied here, spsim, has the limitation of having same flow rates for all
wells. The parameter file for spsim is the same as shown in Section 3.11. Thus, it is
not repeated here. However irrespective of the provenance, all data required for the
inversion process should be arranged in the format shown below.

Reservoir and well data are given in wellpara.dat, which is shown below in Figure
4.37. First line in Figure 4.37 has 5 records. These are number of wells: 5, φ 0.2,
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thickness 20 ft, μ 0.3 cp, and c 5.5 × 10−5 1/psia. The subsequent 5 lines give i, j
locations and wellbore radius of each well.

5 0.2 20.0 0.3 5.5e-5

10 50 0.33

32 40 0.33

40 40 0.33

39 30 0.33

50 8 0.33

Figure 4.37: Data file for reservoir and well parameters.

Boundary condition options and boundary flow rates are provided in data file
boundary.dat. This is shown in Figure 4.38. First line in Figure 4.38 has 64 records
of value 0 indicating no flow condition for each cell in the top boundary. Next 64
lines have 2 records of value 0 indicating no flow condition for each cell in the left and
right boundaries. Again, next line has 64 records of value 0 for no flow condition for
each cell in the bottom boundary. In a similar format except for using floating point
numbers, subsequent 66 lines give the flow rates at each of these cells.

0 0 0 0 0 ... 0 0 0 0 0

0 0

0 0

.

.

.

0 0

0 0 0 0 0 ... 0 0 0 0 0

0. 0. 0. 0. 0. ... 0. 0. 0. 0. 0.

0. 0.

0. 0.

.

.

.

0. 0.

0. 0. 0. 0. 0. ... 0. 0. 0. 0. 0.

Figure 4.38: Data file for boundary conditions and flow rates.

From some source or real well test, data must be available for the dynamic data
integration. Flow rate data are given here in data file flowrate.dat Format of this
data file is excerpted here in Figure 4.39. The only record in the first line is the
number of time steps. For each time step, 6 records must be there in the subsequent
lines. These records are time in days, and flow rates of the five wells in the correct
order.
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50

.010 -10.00 -15.00 -15.00 -15.00 -7.50

.020 -10.00 -15.00 -15.00 -15.00 -7.50

.030 -10.00 -15.00 -15.00 -15.00 -7.50

.040 -10.00 -15.00 -15.00 -15.00 -7.50

... ... ... ...

1033.050 -10.00 -15.00 -15.00 -15.00 -7.50

1133.050 -10.00 -15.00 -15.00 -15.00 -7.50

1233.050 -10.00 -15.00 -15.00 -15.00 -7.50

1333.050 -10.00 -15.00 -15.00 -15.00 -7.50

Figure 4.39: Data file for flow rates.

Well pressure data are in the data file wellpress.dat. The format of this file is shown
below in Figure 4.40. The two records in the first line are number of wells and number
of time steps. Following lines have 11 records: time in days, and pressure (psia) and
weight data for five wells.

5 50

.01 1484.607 1 1468.533 1 1472.980 1 1473.825 1 1482.919 1

.02 1484.264 1 1468.009 1 1472.468 1 1473.312 1 1482.641 1

.03 1483.974 1 1467.538 1 1472.015 1 1472.857 1 1482.406 1

.04 1483.705 1 1467.090 1 1471.589 1 1472.429 1 1482.183 1

... ... ... ... ... ...

1033.05 1406.792 1 1344.673 1 1355.659 1 1357.363 1 1409.159 1

1133.05 1400.716 1 1338.334 1 1349.251 1 1351.055 1 1403.410 1

1233.05 1394.670 1 1332.070 1 1342.921 1 1344.824 1 1397.675 1

1333.05 1388.655 1 1325.869 1 1336.659 1 1338.658 1 1391.954 1

Figure 4.40: Data file for well pressures.

Initial pressure data is provided in data file pinit.dat. Format of this data file is
shown here in Figure 4.41. First line gives the title of the file. Second line has only
record indicating the number of columns available in the file. Next few lines (as many
as the number of columns indicated before) have the column headers. Subsequent
64 × 64 lines give the initial pressure for each cell in the data grid.
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Initial Pressure file

1

Initial Pressure (PSIA)

1502.008

1502.008

1502.008

.

.

.

1502.008

1502.008

Figure 4.41: Data file for initial grid pressures.

S2 Integrate well test data with other static data.

The ssc program is used for the integration of multiple-well single-phase dynamic
data inversion. Parameter file, ssc.par, for the ssc is shown below in Figure 4.42.

Here, the number of “master points” used is 25 (=5 × 5). Maximum number of
outer iterations to update the master points is 3. A factor of 3.0 is used for defining
constraint interval for optimization. Maximum number of outer iteration, relaxation
parameter and minimum tolerance are 15, 0.3 and 0.01 respectively. Optimization
parameters are 50, 5.0 × 10−4, 5.0 × 10−4, 5.0 × 10−3 and 40. These are minimum
number of iterations, tolerances for checks of norm 1, norm 2 and difference in objec-
tive functions in two consecutive iterations, and number of times the differences of two
consecutive objective functions becomes less than the tolerance specified, respectively.
A search radius of 2000 ft is used for kriging. Minimum and maximum number of
samples for kriging are 1 and 24. Type of kriging used is “ordinary kriging” indicated
by 0. The other option available is “simple kriging” indicated by 1. The variogram
model from the reference distribution is used. Besides the data file mentioned earlier,
the ssc program needs a seed file (here, seed.dat) with ln(k) data.

N1 Users should determine histograms, variograms of the generated realizations and
check how good are the histogram, variogram reproduction. Adjustments should
be done by tuning different parameters in order to get better reproductions.

N2 One might be interested in exploring the cases for increased maximum number
of outer iterations, or finer tolerances.

N3 The objective function values, the pressure match responses should be inspected
to check whether a good optimization is obtained.
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Parameters for SSC

*******************

START OF PARAMETERS:

****** -file with local well conditioning ln(k) data

1 2 3 4 -columns for X, Y coordinates, perm. & error

0 5 -num of ln(k) data, num of wells with flow data

1 -index for identifying desired histogram

..\workdir\ref2D.dat -file with ln(k) histogram (scale of SSC model)

2 0 -columns for permeability and weight

0.73 0.6084 -mean and variance of ln(k) distribution

..\workdir\wellpara.dat -file with reservoir and well data

..\workdir\flowrate.dat -file with input flow rate and time step data

..\workdir\wellpress.dat -file with input pressure data

..\workdir\boundary.dat -file with boundary conditions

..\workdir\pinit.dat -file with initial pressure for the entire field

..\workdir\seed.dat -file with input realizations

1 1 1 -number of total, start and end realizations

-999.0 1.0e21 -trimming limits for missing values

3 -debugging level

..\workdir\ssc2d.dbg -file for debug output

..\workdir\ssc2d.out -file for output ln(k) realizations

..\workdir\obj2d.out -file for output obj func after each iter

..\workdir\prematch2d.out -file for output matching of pressure responses

64 50.0 100.0 -X grid size: nx, xmn, xsiz

64 50.0 100.0 -Y grid size: ny, ymn, ysiz

38774 -random number seed

5 5 -num of master points in X and Y

3 -num of outer iter to update master points

3.0 -factor for constraint interval for optim.

15 0.3 0.01 -max num of outer iter, dumping para & min tol

50 5.e-4 5.e-4 5.e-3 40 -optimization parameters

2000. -search radius for kriging

1 24 -min and max num. of samples for kriging

0 -type of kriging

2 0.0 -nst, nugget effect

1 0.5 0.0 900.0 1400.0 -type, sill, azm, max range, min range

1 0.5 0.0 1500.0 3200.0 -type, sill, azm, max range, min range

Figure 4.42: Parameter file for ssc.

S3 Generate fine scale models with simulated annealing technique.

One can downscale coarse grid inverted permeability distributions to higher resolution
fine scale models with the program, sasim. Detailed information about the parameter
file and the code is given in the Appendix A. The format of the parameter files is
almost same as that in GSLIB [61]. Interested readers can perform the downscaling;
programs and parameter files are supplied here.
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S4 Suggested sensitivity analyses.

� Sensitivity to number of master points, search radius for kriging, number of
samples used for kriging can be performed.

� Sensitivity to initial seed of ln(k) distributions can be interesting.

� It is often difficult to get a good variogram model. One logical sensitivity study
can focus on variogram structures. With different variogram models, the inver-
sion process can be repeated and uncertainty due to variograms can be estimated.

� Sensitivity to initial pressures, fluid properties, reservoir dimensions can be per-
formed.





Chapter 5

Multiple Well - Multiple Phase

Computational effort for multiphase flow simulation and sensitivity computation is orders
of magnitude higher than that for single phase flow. Thus, the inverse problem requires
efficient algorithm for sensitivity coefficients of reservoir response with respect to the change
in reservoir petrophysical properties. A streamline-based method is applied for fast calcula-
tion of such sensitivity coefficients. The method decomposes the multiple-dimensional full
flow problem into multiple 1D problems along streamlines. The sensitivity of fractional flow
rate at the production well is directly related to the sensitivity of time-of-flight along each
individual streamline and the sensitivity of pressure at cells along the streamline. The time-
of-flight sensitivity of streamline can be obtained analytically assuming unchanged stream-
line geometry due to the perturbation of reservoir property. The sensitivity of pressure is
obtained as part of a computationally fast single phase flow simulation. The complete set
of sensitivity coefficients are obtained simultaneously with one single phase flow simulation,
and the perturbations at all master locations are jointly considered. Implementation of this
method in a geostatistics-based inversion technique, called the sequential self-calibration
(SSC) method, ensues generating multiple permeability models. Results indicate improved
efficiency of this method, yet more accurate than the traditional perturbation method.

5.1 Background

In the previous chapter, the sequential self-calibration (SSC) method was adapted to solve
the single phase inversion problem. In this chapter, the SSC method is extended for inverting
fractional flow rate data, such as watercut or GOR at production wells, in addition to
pressure data. The objective function for the minimization problem is:

O =
∑

i

∑
t

Wp(i, t)
[
pobs

i (t) − pcal
i (t)

]2
+
∑
j

∑
t

Wf (j, t)
[
f obs

j (t) − f cal
j (t)

]2
(5.1)

where pobs
i (t) and pcal

i (t) are the observed and simulated pressure at well i at time t. f obs
j (t)

and f cal
j (t) are the observed and simulated fractional flow rate at well i at time t. Wp(i, t)

and Wf (j, t) are weights assigned to pressure and fractional flow rate data at different wells
and at different time.

119
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For the optimal permeability perturbations at master locations minimizing the objective
function (5.1), sensitivity coefficients of pressure and fractional flow rate at the wells with
respect to the permeability perturbations are required for all master points at all time steps.
These sensitivity coefficients are:

sp,m,t(i) =
∂pi(t)
∂ � km

, ∀i, t, km (5.2)

and
sf,m,t(j) =

∂fj(t)
∂ � km

, ∀j, t, km (5.3)

with m = 1, . . . , nm being the index of master points. Chapter 4 discussed a method for
computing sensitivity of pressure at all locations (sp,m,t(x), x ∈ all cells). So the focus,
in this chapter, is on the calculation of the sensitivity coefficient of fractional flow rate,
sf,m,t(j).

In matrix notation, discretization of the flow equation with an implicit scheme leads to
the following equation:

[A]{p}t+1 = [B]{p}t + {f}t (5.4)

where [A] is the transmissibility matrix which accounts for spatial and temporal discretiza-
tions, as well as boundary conditions, [B] = [hcφ]/ � tt+1, and {f}t is the right hand side
matrix that accounts for the load vector (production and injection) and flow boundary con-
ditions. The solution of pressure at time t + 1 is obtained by inverting matrix [A], that
is,

{p}t+1 = [A]−1[B]{p}t + [A]−1{f}t (5.5)

The sensitivity coefficients at time step t + 1 can be calculated right after the pressure at
time t + 1 is obtained. The perturbation equation of parameter km can be written as:

[A]
∂{p}t+1

∂ � km
+

∂[A]
∂ � km

{p}t+1 =
∂[B]

∂ � km
{p}t + [B]

∂{p}t

∂ � km
+

∂{f}t

∂ � km
, m = 1, . . . , nm

(5.6)
where nm is the total number of master points, thus,

[A]
∂{p}t+1

∂ � km
=

∂[B]
∂ � km

{p}t + [B]
∂{p}t

∂ � km
+

∂{f}t

∂ � km
− ∂[A]

∂ � km
{p}t+1, m = 1, . . . , nm

(5.7)
Equation 5.7 has the same form as Equation 5.4 and the matrix [A] is inverted when solving
for the pressure {p}t+1. The sensitivity coefficients can be obtained at the same time step
t + 1 by simple matrix operations, that is,

sp,m,t+1 =
∂{p}t+1

∂ � km

= [A]−1[B]
∂{p}t

∂ � km
+ [A]−1 ∂[B]

∂ � km
{p}t + [A]−1 ∂{f}t

∂ � km
− [A]−1 ∂[A]

∂ � km
{p}t+1,

m = 1, . . . , nm

(5.8)



5.2. PERTURBATION METHOD 121

The elements of matrices, ∂[A]
∂�km

, ∂[B]
∂�km

, and ∂{f}t

∂�km
can be directly computed from the

expressions of elements in matrices [A], [B] and {f} with ∂{p}0

∂�km
= 0.

The underlying bases of the inversion method are (1) the analytical 1D solutions of frac-
tional flow along each streamline [9, 11, 18, 173, 174], (2) the ability to compute sensitivity
coefficients of pressure over the entire field from single phase flow solutions, and (3) the as-
sumption that streamline geometry remains unchanged with perturbed permeabilities. The
sensitivity coefficients of fractional flow are obtained extremely fast by simple book-keeping
of the streamlines in space. The permeability perturbations are jointly considered rather
than one at a time as in the perturbation method. This method is implemented within the
SSC algorithm for generating geostatistical permeability realizations that simultaneously
honor transient pressure and fractional flow rate data. Streamlines are updated in each
outer iteration of the SSC inversion (see Figure 4.1). The assumption of streamline geome-
try remaining unchanged during the perturbation is justified by comparing the SSC inverse
results based on both the perturbation method and the analytical method.

5.2 Perturbation Method

A series of measurements of reservoir response dobs(u, t) (pressure or fractional flow rate at
wells) is observed at location u ∈ A and time t. A is the entire space. The reservoir data
are nonlinear functions of the parameter vector a (porosity or permeability): d = g(a). In
this case, the function g represents the multiphase flow equations. The inverse problem
consists of finding the optimal parameter a so that the solution dcal(u, t) = g(a) matches
the observed data dobs(u, t). Thus, the mismatch (dobs−dcal)2 is minimized. For a gradient-
based method (e.g., steepest descent, Gauss-Newton or conjugate gradient method), to find
the optimal parameter set a, the sensitivity coefficients of d with respect to the parameters
in a are required.

The simplest way of computing such sensitivity coefficients is the so-called substitution
or perturbation method. The first order approximation of the sensitivity coefficient is
computed in this method using a finite difference procedure. The SSC method is adapted
to the perturbation method to find the optimal permeability fields that match the fractional
flow data fj(t). An initial permeability field, a0 = k0 = {k0(ui), i = 1, . . . , N}, is selected.
N is the number of cells in the model. The flow equations are solved for fractional flow
rate, fj(0), at all wells and at all time steps using the initial permeability field.

For all master point locations m = 1, . . . , nm (� N usually), a small perturbation
�km is introduced individually to the initial permeability at master location um. The
field �km = {�k(ui), i = 1, . . . , N} due to the perturbation �km = �k(um), at location
um is calculated by kriging. This kriged perturbation field is then added to the initial
permeability field to obtain the perturbed permeability field k′ = k0 + �km. The flow
equations are solved using this perturbed field k′ to obtain the new fractional flow rate
solution, f ′

j(t) induced by the perturbation at master point um. The sensitivity coefficient
of fractional flow rate with respect to the permeability change at master location m can
then be computed as:

sf,m,t(j) =
f ′

j(t) − fj(0)
�km

(5.9)



122 CHAPTER 5. MULTIPLE WELL - MULTIPLE PHASE

Thus, for each outer-iteration of the SSC method (see Figure 4.1), a total of nm + 1 flow
simulation runs are needed to obtain all sensitivity coefficients required, which is very com-
putationally intensive. In addition, the values of sf,m,t(j), computed with this substitution
method, are sensitive to the perturbation magnitude, �km, particularly when the function
f is nonlinear. More importantly, the substitution method computes sensitivity coefficients
of each parameter independently. Thus, it does not account for joint perturbations at all
nm master locations. The spatial relationship of different master locations is not accounted
for. This is crucial for optimization, which will be elaborated later. However, many im-
provements have been proposed to speed up the computation of sensitivity coefficients of
fractional flow rate [39, 118]. These improved methods remain computationally intensive
and none accounts for joint perturbations.

5.3 Streamline-Based Analytical Method

The sensitivity coefficients are calculated based on the streamline algorithm and the ana-
lytical relationship between fractional flow rate and the time-of-flight of streamline [9, 175].
The key assumption is that the streamline geometry is insensitive to the relatively small
perturbations of the permeability field. This assumption is appropriate if the perturbations
are kept small and all streamlines are updated after each outer loop of the SSC inversion.
The complete set of sensitivity coefficients at all master points are obtained simultaneously.
The spatial correlation of perturbation at multiple master locations is accounted for by us-
ing kriging weights computed for all master locations to propagate the perturbations from
the master locations to the entire field.

In the streamline-based method, the fractional flow for a given producing well j at time
t is expressed as [9]:

fj(t) =
∑nsl

j

s=1 qsl
s f sl

s (t)∑nsl
j

s=1 qsl
s

(5.10)

where qsl
s is the flow rate associated with streamline s, and f sl

s (tf ) is the fractional flow
of streamline s at time t. nsl

j is the total number of streamlines arriving to well wf . The
derivative of fj(t) with respect to the permeability perturbation at master point j is then:

sf,m(j, t) =
∂fj(t)
∂ � km

=
1∑nsl
j

s=1 qsl
s

nsl
j∑

s=1

qsl
s

∂f sl
s (t)

∂ � km
(5.11)

Depending on the flow regime, the fractional flow rate f sl
s (t) of streamline s can be

expressed as a function of time-of-flight τs, that is, f sl
s (t) ∼ ( τs

t ). Examples of the function
f sl

s (t) for tracer flow and immiscible two-phase displacement are shown in Figure 5.1. These
functions can either be obtained analytically or numerically [9]. Thus, for ∂fsl

s (t)
∂�km

, it is only
required to compute ∂τs

∂�km
.

For simplification, a non-diffusive tracer flow (unit mobility ratio and matched fluid
density) is considered. In such case, the fractional flow rate is (see Figure 5.1a):

f sl
s (t) =

{
1,
0,

if τs ≤ t
if τs > t

(5.12)
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Figure 5.1: (a) Analytical 1D solution of tracer flow and its approximation using a Gaussian cumu-
lative function (dashed line), and (b) analytical 1D solution of immiscible two-phase displacement.

Since Equation (5.12) is not differentiable at τs/t = 1, a Gaussian cumulative function
F (τs/t) with small variance is used to approximate the 1D tracer solution (Figure 5.1a):

f sl
s (t) ≈ 1 − F (

τs

t
) (5.13)

hence,
∂f sl

s (t)
∂ � km

= −1
t
G(

τs

t
)

∂τs

∂ � km
(5.14)

where

G(
τs

t
) =

1√
2πσ

e−
(τs−t)2

2t2σ2

is a Gaussian distribution function with mean 1 and variance σ2. The variance σ2 should be
small so that the approximation is close. The influence of that variance on the sensitivity
coefficients is investigated later.

In the case of two-phase immiscible displacement as shown in Figure 5.1b, the derivatives
of fractional flow with respect to the time-of-flight can be directly computed from Buckley-
Leverett solution.

The time-of-flight of streamline s is a function of total flow velocity itself is a function
of permeability and total pressure along the streamline:

τs =
∫ s

0

1
vs

ds. (5.15)

In a discretized numerical model (see Figure 5.2), the time-of-flight of streamline s from
injector to producer is the sum of the time-of-flight in each cell that streamline s passes
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Figure 5.2: Schematic illustration of tracking a streamline through a discretized numerical model.

through, that is,

τs =
ns,c∑
c=1

�τs,c (5.16)

ns,c being the number of cells crossed by streamline s from injector to producer, and �τs,c

is the associated time-of-flight for streamline s to pass through cell c.
In Figure 5.2, for example, the total number of cells crossed by the streamline from

injector to producer is 13 (= ns,c). Based on the semi-analytical solution [46, 149], that is,
assuming linear variation of velocity in all directions within a numerical cell, the cell (or
differential) time-of-flights are:

� if the streamline exits the cell c in the X-direction,

� τs,c = �τs,c,x =
1
Jx

ln

{
vx,0 + Jx(xe − x0)
vx,0 + Jx(xi − x0)

}
(5.17)

� if the streamline exits the cell c in the Y -direction,

� τs,c = �τs,c,y =
1
Jy

ln

{
vy0 + Jy(ye − y0)
vy0 + Jy(yi − y0)

}
(5.18)

where
Jx =

vx,�x − vx,0

�x

Jy =
vy,�y − vy,0

�y
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vx,0 = −T01
p0 − p1

�xφμ
, T01 =

2k0k1

k0 + k1

vx,�x = −T02
p2 − p0

�xφμ
, T02 =

2k0k2

k0 + k2

vy,0 = −T03
p0 − p3

�yφμ
, T03 =

2k0k3

k0 + k3
(5.19)

vy,�y = −T04
p4 − p0

�yφμ
, T04 =

2k0k4

k0 + k4

where �x and �y are the cell size in X and Y directions, φ the porosity, T01 to T04 the
transmissibilities for the four interfaces of the cell intersected by the streamline (cell 0 in
Figure 5.2), p0 to p4 and k0to k4 the pressure and permeability values at the current (0)
and the surrounding (1 to 4) cells, respectively (see Figure 5.2). (xi, yi) and (xe, ye) are the
inlet and exit coordinates of the streamline in current cell 0, and (x0, y0) is the coordinate
of the lower-left corner of current cell 0.

From Equations (5.16) to (5.19), the derivatives of time-of-flights with respect to per-
meabilities are derived to be:

∂τs

∂ � kj
=

ns,c∑
c=1

⎧⎨
⎩

4∑
g=1

∂ � τs,c

∂T0g

∂T0g

∂ � kj
+

4∑
l=0

∂ � τs,c

∂pl

∂pl

∂ � kj

⎫⎬
⎭ (5.20)

∂�τs,c

∂T0g
and ∂�τs,c

∂pl
can be computed from Equations (5.17) and (5.18). ∂pl

∂�kj
are the sensitivity

coefficients of pressure with respect to permeability change, Their computation is discussed
in the previous chapter [191]. Finally [73].

∂T0g

∂ � kj
=

T 2
0g

2

{
λ0

j

k2
0

+
λg

j

k2
g

}
(5.21)

λ0
j and λg

j are the kriging weights attributed to master point j, cells 0 and g (g = 1, . . . , 4).
Since the kriging weights are computed accounting for all master points [112], the resulting
sensitivity coefficients account for the spatial distribution of all master points. The perme-
ability perturbations at all master locations are now considered jointly rather that one at
a time. The complete set of sensitivity coefficients at all master points are obtained simul-
taneously. In addition, there is no need to choose a specific value of �kj before computing
sensitivity coefficients.

5.4 Derivation of Time-of-Flight and Derivatives

The derivations of the time-of-flights and their derivatives or the sensitivity coefficients are
laid out in this section. Essentially, this calculation reduces to a simple book-keeping of the
streamlines in the simulation model. This is both mathematically simple and computation-
ally efficient. Extension of this method to other types of flow, such as immiscible two-phase
flow and 3D flow, should be straightforward.



126 CHAPTER 5. MULTIPLE WELL - MULTIPLE PHASE

From Equations (5.17) to (5.19), the cell time-of-flights, derived, are:

� τs,c,x =
−� x2φ

Ax
ln
{�xT01(p0 − p1) + Ax(xe − x0)
�xT01(p0 − p1) + Ax(xi − x0)

}
(5.22)

� τs,c,y =
−� y2φ

Ay
ln

{
�yT01(p0 − p3) + Ay(ye − y0)
�yT01(p0 − p3) + Ay(yi − y0)

}
(5.23)

where Ax = T01(p1 − p0) + T02(p2 − p0), and Ay = T03(p3 − p0) + T04(p4 − p0).
The derivatives, required in Equation (5.20) in the x-direction, are stated below (refer

to Figure 5.2). Taking partial derivatives of Equation 5.22 with respect to T01, T02, T03,
T04, p0, p1, p2, p3 and p4, respectively, Equations (5.24) to (5.30) are obtained.

∂ � τs,c,x

∂T01
=

−� x2φ(p0 − p1)
A2

x

{
ln

Dx

Cx
+ Ax

[�x − (xe − x0)] Cx − [�x − (xi − x0)] Dx

CxDx

}
(5.24)

∂ � τs,c,x

∂T02
=

−� x2φ(p0 − p2)
A2

x

{
ln

Dx

Cx
+ Ax

−(xe − x0)Cx + (xi − x0)Dx

CxDx

}
(5.25)

∂ � τs,c,x

∂T03
=

∂ � τi,s,x

∂T04
= 0 (5.26)

∂ � τs,c,x

∂p0
=

−� x2φ

A2
x

{
−(T01 + T02) ln

(
Dx

Cx

)
+

Ax
[�xT01 − (T01 + T02)(xe − x0)] Cx − [�xT01 − (T01 + T02)(xi − x0)] Dx

CxDx

}
(5.27)

∂ � τs,c,x

∂p1
=

−� x2φ

A2
x

{
T01 ln

(
Dx

Cx

)
+

Ax
[−� xT01 + T01(xe − x0)] Cx − [�xT01 + T01(xi − x0)] Dx

CxDx

}
(5.28)

∂ � τs,c,x

∂p2
=

−� x2φ

A2
x

{
T02 ln

(
Dx

Cx

)
+ Ax

T02(xe − x0)Cx − T02(xi − x0)Dx

CxDx

}
(5.29)

∂ � τs,c,x

∂p3
=

∂ � τi,s,x

∂p4
= 0 (5.30)

where Cx = �xT01(p0 − p1) + Ax(xi − x0) and Dx = �xT01(p0 − p1) + Ax(xe − x0).
Similarly, in the y-direction, taking partial derivatives of Equation 5.23 with respect to

T03, T04, T01, T02, p0, p3, p4, p1 and p2, respectively, Equations (5.31) to (5.37) are obtained.

∂ � τs,c,y

∂T03
=

−� y2φ(p0 − p3)
A2

y

{
ln

Dy

Cy
+ Ay

[�y − (ye − y0)] Cy − [�y − (yi − y0)] Dy

CyDy

}

(5.31)
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∂ � τs,c,y

∂T04
=

−� y2φ(p0 − p4)
A2

y

{
ln

Dy

Cy
+ Ax

−(ye − y0)Cy + (yi − y0)Dy

CyDy

}
(5.32)

∂ � τs,c,y

∂T01
=

∂ � τs,c,y

∂T02
= 0 (5.33)

∂ � τs,c,y

∂p0
=

−� y2φ

A2
y

{
−(T03 + T04) ln

(
Dy

Cy

)
+

Ay
[�yT03 − (T03 + T04)(ye − y0)]Cy − [�yT03 − (T03 + T04)(yi − y0)]Dy

CyDy

}
(5.34)

∂ � τs,c,y

∂p3
=

−� y2φ

A2
y

{
T03 ln

(
Dy

Cy

)
+

Ay
[−� yT03 + T03(ye − y0)] Cy − [�yT03 + T03(yi − y0)]Dy

CyDy

}
(5.35)

∂ � τs,c,y

∂p4
=

−� y2φ

A2
y

{
T04 ln

(
Dy

Cy

)
+ Ay

T04(ye − y0)Cy − T04(yi − y0)Dy

CyDy

}
(5.36)

∂ � τs,c,y

∂p1
=

∂ � τs,c,y

∂p2
= 0 (5.37)

where Cy = �yT03(p0 − p3) + Ay(yi − y0) and Dy = �yT03(p0 − p3) + Ay(ye − y0).
This elegant account of the streamline derivatives is an essential feature of the streamline-

based analytical technique. For increasiingly large grid sizes, this method with simple book-
keeping of streamlines proves to be far more efficient than the perturbation methods. The
derivatives here have been derived for 2D grids, which can easily be extended to 3D grids.

A simplification to the computation of the time-of-flights derivatives can be imple-
mented. One can assume that the contribution of the second term of the derivation shown
in Equation 5.20 is negligible. So the derivatives of time-of-flights with respect to perme-
abilities will now be:

∂τs

∂ � kj
=

ns,c∑
c=1

⎧⎨
⎩

4∑
g=1

∂ � τs,c

∂T0g

∂T0g

∂ � kj

⎫⎬
⎭ (5.38)

with the notations having earlier implications. Further simplification, which precludes a few
computational steps, can be implemented if one considers ∂�τs,c

∂kc

∂kc
∂�kj

instead of ∂�τs,c

∂T0g

∂T0g

∂�kj
,

where kc is the permeability at cell c. This reduces the necessary derivative equation to:

∂τs

∂ � kj
=

ns,c∑
c=1

∂ � τs,c

∂ � kj
=

ns,c∑
c=1

∂ � τs,c

∂kc

∂kc

∂ � kj
. (5.39)
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The partial derivatives in Equation 5.39 can be derived from the basic equations. Combining
Equations 5.15, 5.16 and Darcy’s law one can obtain:

� τs,c =
∫ sout

sin

1
vs,c

dr =
∫ sout

sin

φcμ

kc|J |dr (5.40)

where φ, μ and kc are porosity, viscosity and permeability at cell c, and |J | is the absolute
value of the pressure gradient. Assuming independence of the time-of-flights to the pressure
gradient, the partial derivatives can be approximated to be:

∂ � τs,c

∂kc
= −�τs,c

kc
. (5.41)

Applying the above to Equation 5.39, the derivative equation will be reduced to:

∂τs

∂ � kj
=

ns,c∑
c=1

∂ � τs,c

∂kc

∂kc

∂ � kj
= −

ns,c∑
c=1

�τs,c

kc
ωj,c (5.42)

where ωj,c is the kriging weight of master point j to cell c, which accounts for the correlation
of permeability at the two locations. Studies indicate faster convergence using this simplified
approach with little loss of accuracy.

5.5 Implementation Issues with Synthetic Examples

Some implementation issues regarding the number of master points and computational
efficiency are discussed here. This section also compares the accuracy and efficiency of the
streamline-based perturbation method and the analytical method for computing sensitivity
coefficients for the SSC inversion.

5.5.1 Single master point

The sensitivity coefficients, computed by the streamline-based analytical method and per-
turbation method with only one master point, are compared first. The perturbation method
does not account for the spatial distribution of all master points, whereas the analytical
method does. Therefore, the sensitivity coefficients computed by the two methods are com-
parable only when there is single master point. Figure 5.3 provides this comparison. Figure
5.3a is the 2D ln(k) field with constant permeability ln(k) = 2 md. There are four producers
at the four corners and one water injector at the center of the field. Injection rate is 3000
STB/day. Tracer flow conditions, that is, unit mobility ratio and matched fluid density are
assumed. The production rates are held constant for each producer at 500 STB/day for
wells 1 and 4, 1000 STB/day for wells 2 and 3. Other reservoir parameters are: thickness
h = 100 ft, porosity φ = 0.2, viscosity μ = 0.3 cp, and compressibility c = 10−5 1/psi. The
streamline geometry for this base field is also given in Figure 5.3a. The fractional flow rate
at well 1, f0

j (t), is shown in Figure 5.3b.
A single master point is selected close to well 1 with a perturbation of �(ln(k))1 = 0.2.

This perturbation is then propagated through the entire field by kriging to obtain a pertur-
bation field (Figure 5.3c) resulting in the updated field shown in Figure 5.3d. An anisotropic
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Figure 5.3: Comparison of sensitivity coefficients computed by the two methods for the case of a
single master point.
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Figure 5.4: Sensitivity coefficients computed by the perturbation method using different pertur-
bation values at the master point.

variogram with major range in direction 45◦ is used for this propagation. The flow equation
is solved again based on the perturbed permeability field to obtain the perturbed fractional
flow rate f1

j (t) at well 1 due to the original perturbation at the master point (see Figure
5.3e). The new streamline geometry for the perturbed permeability field is also shown in
Figure 5.3d. There is very little change in streamline geometry.

Using the perturbation method, the sensitivity coefficients are computed as:

sf,1,t(j) =
f1

j (t) − f0
j (t)

�k1

The corresponding values are shown in Figure 5.3g. The sensitivity coefficients of pressure
for the entire field with respect to the permeability perturbation at the master point required
by the proposed method are shown in Figure 5.3f. These are computed as part of single
phase flow simulation [191]. The results obtained by the method illustrated are also in
Figure 5.3g. The results from the two methods are similar which indicates the accuracy of
the proposed method.

The sensitivity coefficients computed by the perturbation method are sensitive to the
value of perturbation �k1 used in the calculation. Figure 5.4 shows the sensitivity coef-
ficients at well 1 using different permeability perturbations at the master point. A 15 %
perturbation of the initial value provides reasonably stable results. The appropriate �k1

changes for different master points and different wells because of their relative configuration.
The accuracy of the calculation of sensitivity coefficients using the perturbation method will
vary for different master points and different wells although using the same �k1 value.

Here, a Gaussian cumulative function, with a mean of 1 and a small variance, is used to
approximate the analytical 1D tracer flow solution (see Figure 5.1a). The influence of that
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Figure 5.5: Sensitivity coefficients computed by the proposed method using different variance
values to approximate the 1D analytical solution.

variance on the sensitivity coefficient results is shown in Figure 5.5 using the field shown
in Figure 5.3. The larger the variance value, the smoother are the sensitivity coefficient
results. Therefore, the variance should be small enough (say 0.01). The accuracy of the
sensitivity coefficients calculated at different master points and for different wells does not
change if the same variance value is used.

Experience shows that the positive or negative signs of the sensitivity coefficients guide
the direction of perturbation in the optimization. Thus, the signs of the coefficients are
more important than the amplitudes in the inversion process.

5.5.2 Multiple Master Points

For multiple master points, the sensitivity coefficients calculated by the two methods are
not directly comparable. Since the analytical method accounts for the spatial correlation
of perturbations at the multiple master points, whereas the perturbation method does not.
Nevertheless, their accuracy can be judged indirectly by comparing the final inversion results
and corresponding objective functions.

Figure 5.6 shows a reference deterministic field (25×25 nodes over a 2D grid with cell
size of 160 ft ×160 ft) and the corresponding fractional flow data at 4 wells. Starting from
the homogeneous permeability field with k = 7 md (Figure 5.7b), the SSC method is used
to match the fractional flow data. Sixteen master points, randomly selected and updated
after 3 outer iterations, and an anisotropic variogram with long correlation length at 45◦

were used for the inversion. The final permeability fields obtained after 20 iterations are
shown in Figures 5.7c,d using both methods. Decreases in the objective function using the
two methods are shown in Figure 5.7e. It appears that the SSC inversion results using
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Figure 5.6: A synthetic deterministic reference field and the fractional flow rate data from four
wells.

either method reproduce well the high permeability band of the reference field with a final
objective function close to zero. However, a visually better inversion result is obtained with
slightly lower objective function when using the the streamline-based analytical method.

Figure 5.8 shows another 2D stochastic reference field (50×50 grid with cell size 80
ft ×80 ft) and the corresponding fractional flow data at 4 wells. The injection rate at
the central well is 1600 STB/day, and the production rate for the 4 producing wells is
400 STB/day/well. Figure 5.9 shows three initial permeability fields, the resulting fields
updated by SSC using the two different methods for computing sensitivity coefficients and
the decreases of the objective function with number of iterations. The same 25 randomly
selected master points are used for all realizations. The analytical method provides more
accurate inverse permeability fields with lower objective functions for all three realizations.
Also, the objective function shows monotonic decrease for the analytical method.

The comparison of individual realizations as shown in Figure 5.9 is difficult and sub-
jective. A better comparison of the inverse results from the two methods is given by the
ensemble results calculated from 200 realizations, (see Figure 5.10). In comparison with the
reference field given at the bottom of the figure, the inverse results using the streamline-
based method are superior in that the results are more accurate (better representation of the
reference spatial variation patterns) and have less uncertainty (smaller standard deviation).

Thus, compared to the perturbation method, the inversion responses using the streamline-
based analytical method in the SSC inversion have the following characteristics. The objec-
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Figure 5.7: Inversion responses from SSC using two methods for computing sensitivity coefficients.
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Figure 5.8: A synthetic stochastic reference field and the fractional flow rate data from the four
corner wells.
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Figure 5.9: Three realizations of initial and inverse results from the SSC method using different
methods for computing sensitivity coefficients, and the variations of objective functions after each
iteration.
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Figure 5.10: Ensemble fields (mean and standard deviation) from 200 inverse realizations using
the two methods for computing sensitivity coefficients.
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tive function behavior is better revealing a monotonic decrease for almost all realizations.
A lower objective function value can be achieved in the minimization problem. Reference
spatial patterns are better reproduced with less uncertainty.

The improved accuracy of this method may be attributed to the following reasons. This
method jointly accounts for the perturbations of multiple master locations through the krig-
ing weights. The magnitude of the specific perturbation values does not affect the responses
much. The absolute values of the sensitivity coefficients are not as important to the inver-
sion as their signs for the SSC inversion. The assumption that the streamline geometry
is relatively insensitive to the permeability perturbation within a single inner iteration of
the SSC does not limit the application of the proposed method due to the updating of
streamlines after each outer loop of SSC inversion. This is a reasonable assumption as long
as the permeability perturbation is small, which is the case within each inner iteration.

5.5.3 CPU Time Comparison

The CPU time for computing sensitivity coefficients of fractional flow using the two methods
depends mainly on the size of the simulation model (number of cells), number of master
points, and total number of streamlines used. Other minor factors include the number of
producers and the number of time steps in the simulation. Model size is, however, the
dominant factor due to the flow simulation.

Figure 5.11 shows CPU time (SGI workstation) of 10 SSC iterations versus the number
of cells in the model with 25 master points and 1000 streamlines. For a small model, the
perturbation method is slightly faster than the streamline-based analytical method because
solving a few flow equations using the streamline method is quicker than the proposed book-
keeping of streamlines. As the model becomes larger, the CPU time increases dramatically
using the perturbation method because the flow equations must be solved many more times.
Total number of flow simulation is the product of the iteration number and the sum of
number of master points and 1, for the perturbation method. Whereas the CPU time for
the proposed method increases much more slowly than the perturbation method. In this
case, the total number of flow simulations is the number of iterations. With a 100 × 100
grid model, the CPU time using the perturbation method is more than 5 times that using
the analytical method.

Other non-SSC based methods for inverting production data that require flow simula-
tions at every iteration for every cell or zone (i.e., full matrix) without using streamline-
based simulator could be orders of magnitude slower than the SSC-based streamline methods
[87, 118, 144]. The CPU time of one such inversion is also given in Figure 5.11 for compar-
ison. It is orders of magnitude slower than this method here. In fact, the full matrix-based
perturbation method used can not run model with cells number larger than 30 × 30 for this
particular code due to its extreme memory demanding.

5.6 Application to a Realistic Reservoir

This section applies the inversion technique to a realistic reservoir example. Sensitivity
of the technique to initial models and variograms, and the value of additional well data
are also demonstrated. Figure 5.12 shows a 2D reference field (50×50 grid with cell size
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also shown.

80 ft ×80 ft) and the corresponding fractional flow data at 4 wells. The injection rate at
the central well is 1600 STB/day and the production rate for the 4 producing wells is 400
STB/day/well. This synthetic field was generated by sequential Gaussian simulation sgsim
[61] with an assumed variogram. Other reservoir parameters are the same as in the earlier
example. A high permeability zone and a low permeability zone exist in the middle of the
field. There is relatively higher interconnectivity between the injection well and well 3 than
that between the injection well and other wells (2 and 4).

Pressure data at the five wells and the fractional flow rates at the four production wells
up to 1800 days are used for inverting to permeability models. Figure 5.13 shows three ini-
tial permeability fields computed using the same variogram that was used to generate the
reference model and the histogram from the exhaustive data, the resulting fields updated
by SSC for pressure data only at the five wells, fractional flow rate data only at the four
production wells, and both pressure and fractional flow rate data. The reference field is
shown at the bottom of the figure for comparison. The relative decreases of both compo-
nents of the objective function with number of iterations for the three realizations are given
in Figure 5.14. The same 25 randomly selected master points are used for all realizations.
The variogram determined from the exhaustive reference field is used for propagating the
perturbations from the master locations throughout the entire field. The reference his-
togram is explicitly honored in all updated realizations. Twenty SSC iterations are used for
obtaining the final permeability models in all realizations. The CPU time for generating one
realization is about 10 minutes (SGI workstation) for the case of matching both pressure
and fractional flow rate data. Less CPU time is required when only pressure or fractional
flow rate data alone are matched. As shown in [192], the CPU time increases approximately
linearly with number of grid cells.

Figure 5.13 provides comparisons of inverted permeability models derived from matching
of production data for three different initial permeability models. The initial models were
initialized with only the correct variogram and histogram. The figures show increasing
improvement in predicting the high and low permeability regions between wells as compared
to the reference model as pressure, fractional flow, and both pressure and fractional flow
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Figure 5.12: Synthetic reference field (sgsim-generated) and the fractional flow rate data from the
four corner production wells. Production data inverted up to 1800 days.

are inverted in turn.
Figure 5.14 shows that the component of fractional flow in the objective function is

not well constrained when only pressure data are used to invert the permeability field.
Similarly, when only fractional flow rate data are used, the resulting permeability field may
produce relatively large deviations in the pressure responses from the true field. Only when
both pressure and fractional flow rate data are used, do the resulting permeability models
reproduce both pressure and fractional flow rate data jointly with both components of the
objective function monotonically decreasing to close zero.

The comparisons of simulated and observed pressure and fractional flow rate data for
the first initial model are given in Figure 5.15. Both pressure and fractional flow rate data
deviate significantly from the true results for the initial field. The pressure data are exactly
matched when only pressure data are used in the inversion, but fractional flow rate data
remain significantly deviated from the true data. When only fractional flow rate data are
used in the inversion, the model reproduces the fractional flow data accurately but with large
deviation for the pressure data. Both pressure and fractional flow rate data are accurately
matched when both data sets are used to constrain the model in the inversion.

To compare the inversion results from the different data sets, the ensemble statistics
from 200 different initial field realizations were computed (see Figure 5.16). For the initial
fields, no additional spatial information is retained except the mean (6.0) and variance (3.0).
Some large scale spatial patterns of the permeability can be identified from inversion of the
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Figure 5.13: SSC-inverted permeability models derived from three different initial models: inverted
pressure data only, inverted fractional flow data only, and jointly inverted pressure and fractional
flow data.
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Figure 5.14: Decrease of relative objective function values for the three initial models : inverted
pressure data only, inverted fractional flow data only, and jointly inverted pressure and fractional
flow data.
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Figure 5.15: Simulated versus observed (reference) pressure and fractional flow data for one initial
permeability model: initial model, inverted pressure data only, inverted fractional flow data only,
and jointly inverted pressure and fractional flow data.
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pressure data alone with reduced uncertainty in the areas immediate to the well locations.
More spatial variation patterns are identified from the fractional flow rate data with lower
uncertainty in the interwell areas. The best results are those inverted jointly from both
pressure and fractional flow rate data. They more accurately reproduce most of the high
and low permeability features in the reference field with much less uncertainty compared
to the results using only pressure or fractional flow rate data alone.

5.6.1 Sensitivity to Initial Models and Variograms

The robustness of the inverse algorithm to different input models was tested with the initial
models having completely different features from the reference field. SSC was used to update
them to match the pressure and fractional flow rate data. The sensitivity of the inversion
responses to two different variograms was also investigated.

Figure 5.17 shows three models updated from uniform permeability fields and two purely
random permeability fields. The relative decreases of both components of the objective func-
tion are also given at the bottom row of this figure. The three final updated models (after 20
SSC iterations, using the reference field variogram) reproduce the spatial variation patterns
of the reference field very well as shown in the figure. The model updated from the uniform
initial model displays smoother variations than the true field, while the models updated
from the purely random initial fields have more small scale fuzzy features, although their
large scale patterns are correct. All updated models accurately match both the pressure
and fractional flow rate data with objective functions close to zero.

Figure 5.18 shows the inverse results updated from an uniform initial field with quite
different anisotropic variograms. The major correlation of one variogram is in the vertical
direction, while of the other in the horizontal direction. Although the final results have a
different appearance than the reference field, due to the variogram structure, they both still
correctly identify the relative locations of high and low permeability regions, as well as the
spatial inter-connections between well pairs. Both pressure and fractional flow rate data
are matched in both models with excellent convergence.

5.6.2 Value of Additional Well Data

For the same reference model, production data from a nine-well pattern was utilized for the
inversion of the permeability. Pressure data from the nine wells and fractional flow rate data
up to 1800 days from the eight production wells are used. Two inverted permeability fields,
the ensemble fields of mean and standard deviation from 200 initial field realizations are
shown in Figure 5.19. These models more accurately reproduce the reference permeability
model with less uncertainty as compared to the results with data from 5 wells (Figure 5.13).
Additional well data, as expected, yield more constrained inversion responses.

5.7 Reservoir Performance Predictions

The ability of the streamline-based methods to match historical temporal production data at
wells was demonstrated previously. For a greater control and better reservoir management,
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realizations: inverted pressure data only, inverted fractional flow data only, and jointly inverted
pressure and fractional flow data.
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Figure 5.17: Inversion responses from very different initial models and their associated objective
functions: uniform model and two random models that honor the permeability histogram. The SSC
utilizes the variogram from the reference model.
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Figure 5.18: Inversion responses from two very different anisotropic variogram models and their
associated objective functions.
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Figure 5.19: The reference field, two realizations of inversion responses, the ensemble mean and
standard deviation from 200 initial field realizations when production data from 9 wells are used for
the SSC inversion.
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some insight into the future reservoir behavior is essential. This section illustrates the
predictive capability of the inverted permeability models.

First, results from the synthetic model used in Section 5.6 were used to predict the
fractional flow at the 4 production wells to 6600 days with the same well conditions. The
same injection and production rates are used as before to match the models. Using the
initial fields where neither pressure data nor fractional flow rate data are matched, the
production from 30 initial field realizations are shown in Figure 5.20. These predictions
have large deviations from the true results and large uncertainty.

When the pressure data at the five wells are matched, the predictions in the 4 production
wells from 30 realizations are given in Figure 5.21. Clear improvement is evident compared
to the initial fields. However, these predictions still exhibit large uncertainty. This indicates
that matching single phase pressure data for this reservoir model may not be sufficient for
reliable prediction of multiphase flow. More information is required.

Predictions are shown in Figure 5.22 for the permeability models obtained from matching
the fractional flow rate data to 1800 days at the 4 wells. It is clear that the predictions of
fractional flow at the 4 wells are dramatically improved over those of pressure data matching.
As more historical fractional flow data are available, the match improves. For example,
well 3 with about 1300 days of historical fractional flow production is matched much better
than well 2, which has only about 150 days of historical fractional flow production matched.
There is still some spread from the 30 models around the breakthrough times and fractional
flow production up to 1800 days. This indicates the quality of the matches achievable for
the fractional flow data.

The best predictions of reservoir performance are obtained by using reservoir models for
which both pressure and early time fractional flow rate data at the same wells are used in the
inversion (Figure 5.23). Results in this example suggest that there is interaction between
the pressure and fractional flow rate data. Incorporating pressure data, when matching
fractional flow rate data, results in a better match of fractional flow rate than using only
fractional flow rate data.

Whether reservoir models matching production data at one set of wells are good predic-
tors of reservoir performance at other wells where production data was not matched, was
also investigated. Again, using results from synthetic example in Section 5.6, prediction
was made for the fractional flow rate at wells 6 to 9. Permeability realizations generated
by matching pressure and fractional flow rate data only at wells 1 to 5 (Figure 5.19) were
used. Figures 5.24 and 5.25 show the histograms of the first water breakthrough times and
times of 80% watercut predicted at wells 6 to 9 from 200 initial model realizations. Predic-
tions, from the initial realizations with no production data matched, have large uncertainty.
When the pressure data at wells 1 to 5 and the fractional flow rate to 1800 days at wells
1 to 4 are inverted, the resulting predictions at wells 6 to 9 are improved. However, the
improvement is not as good as that when the early time production data, at the same wells
being predicted, were matched. This implies that the predictive improvement for a set of
wells with the models, inverting the production data at another set of wells, is limited. The
coarse permeability model, generated from production data, must be integrated with the
other reservoir static geologic and petrophysical data for additional improvement.
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Figure 5.20: Predictions of fractional flow rates at the four production wells from 30 realizations
of initial permeability fields. Thick lines are results from the reference field. Dashed line is at 1800
days.
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Figure 5.21: Predictions of fractional flow rates at the four production wells from 1800 days to
6600 days for 30 initial field realizations of permeability inverted from pressure data to 1800 days
(dashed line). Thick lines are results from the reference field.
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Figure 5.22: Predictions of fractional flow rates at the four production wells from 30 initial field
realizations of permeability inverted from fractional flow rate data to 1800 days (dashed line)alone.
Thick lines are results from the reference field.
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Figure 5.23: Predictions of fractional flow rates at the four production wells from 30 initial field
realizations of permeability inverted from pressure and fractional flow rate data to 1800 days (dashed
line).Thick lines are results from the reference field.
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Figure 5.24: Histograms of water breakthrough time predicted at wells 6 to 9 using initial perme-
ability fields (left) and updated permeability fields that honor pressure and fractional flow rate data
at wells 1 to 5 (right). The bullets are the times from the reference field.
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Figure 5.25: Histograms of time for 80% watercut predicted at wells 6 to 9 using initial permeability
fields (left) and updated permeability fields that honor pressure and fractional flow rate data at wells
1 to 5 (right). The bullets are the times from the reference field.



5.8. DISCUSSION 153

5.8 Discussion

An inversion methodology has been discussed in this chapter for computing sensitivity coef-
ficients of fractional flow with respect to permeability based on the streamline method. This
method is implemented within the SSC framework for inverting permeability models from
fractional flow rate data. Furthermore, the method is tested by comparing the sensitivity
coefficient results using the perturbation method in presence of only one single master point.
For multiple master points, this streamline-based analytical method is more accurate than
the perturbation method. The SSC inversion with the streamline-based analytical method
provides more accurate inverse permeability field than with the perturbation method. It
was also shown that this method is computationally more efficient than the perturbation
method for large models.

Essentially, the streamline-based method of sensitivity coefficient has the following fea-
tures. The fractional flow is the sum of of fractional flow rate of all contributing streamlines
(Equation 5.10). The sensitivity coefficient of fractional flow for each streamline is a func-
tion of sensitivity of time-of-flight and a derivative of the 1D solution (Equation 5.14). The
sensitivity coefficient of time-of-flight is separated into a pressure part and a permeability
part along the streamline (Equation 5.20). The pressure part comes from a single phase
flow solution [191]. The permeability part comes from the algorithm (kriging) used to
propagate the permeability perturbation (Equation 5.21). The derivatives of time-of-flight
with respect to transmissibility and pressure are obtained from the analytical expression of
time-of-flight (Section 5.4).

Computation of the sensitivity coefficients with respect to permeability perturbation is
reduced to solving a single phase flow equation only once and then keeping track of the
streamlines from injectors to producers. The complete set of sensitivity coefficients at all
master locations are obtained simultaneously, thus the spatial correlation of perturbations at
multiple master locations is accounted for. It is fast and more accurate than the perturbation
method.

The main assumption for this method is that the streamline geometry is unchanged
after any one single perturbation of the permeability field. The impact of this assumption
is limited by keeping the permeability perturbation small in each iteration, and by re-solving
the flow equation and updating the streamline geometry after each outer loop in the SSC
inversion.

The method requires to calculate the sensitivity coefficients of single phase pressure
to permeability changes of all cells intersected by the streamlines and their immediate
neighbors (essentially all cells of the model). Advantage can be taken of the computation
of sensitivity coefficients of pressure for a single phase flow simulation [191].

Only tracer flow representation with an unit mobility ratio and matched fluid density
displacement was implemented here. The exact 1D analytical solution along the streamline
for such flow is available and the pressure field does not change during the course of injection.
For other types of flow with different mobility ratio and different fluid density, or when there
are changes in well configuration and injection (or production) conditions, the pressure field
must be periodically updated and thus also the streamline geometry within any one flow
simulation [9, 10]. In such cases, it is required to retain all information about the locations
(geometry) of all streamlines and their associated time-of-flight, as well as the associated
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pressure fields. When the analytical 1D solution along the streamline is not available, other
method (such as the semi-analytical or numerical method) can be used to compute the 1D
fractional flow rate solution. In case the 1D solutions are discontinuous, these solutions
require smoothing to render them differentiable.

Finally, only the derivations of the sensitivity coefficients of fractional flow to perme-
ability were presented here. When inverting for porosity, the method can be extended to
compute sensitivity coefficients of fractional flow rate to porosity. Also, the method could
be extended to computing sensitivity coefficients of saturations to honor saturation data
from wells or from 4D seismic data.

5.9 Inversion of Saturation Distribution Data

So far in this chapter permeability inversion is considered using only pressure and fractional
flow data. Saturation data derived from the interpretation of 4D seismic (i.e. time-lapse
seismic) survey can also be included in the inversion algorithm. This notion is comparatively
recent than those discussed in the chapter. In this section, the streamline-based SSC method
is extended to invert permeability models from saturation distribution data.

With all the production data mentioned above, the objective function in SSC method
can be written as:

O =
∑

i

∑
t

Wp(i, t)
[
pobs

i (t) − pcal
i (t)

]2
+
∑
j

∑
t

Wf (j, t)
[
f obs

j (t) − f cal
j (t)

]2

+
∑
c

∑
t

Ws(c, t)
[
Sobs

c (t) − Scal
c (t)

]2
(5.43)

where pobs
i (t), pcal

i (t), f obs
j (t), f cal

j (t), Wp(i, t) and Wf (j, t) have the same implications as in
Equation 5.1. Sobs

c (t) and Scal
c (t) are the observed and simulated saturation of the injected

phase at cell c at time t, and Ws(c, t) is the weight assigned to saturation data at different
wells and at different time.

For a streamline-based flow simulator, the saturation of injected fluid at a given cell c
at a given time t can be computed as ([9, 11]):

Sc(t) =
nslc∑
l=1

wc
l S

slc
l (t) (5.44)

where nslc is the total number of streamlines passing cell c. S
slc
l (t) = S

slc
p (τ c

l /t) is the

averaged saturation of streamline l, and τ c
l = τ

cin
l

+τ
cout
l

2 is the averaged time-of-flight of
streamline l when passing through the cell c. The weight is usually computed as:

wc
l =

�τ c
l∑nslc

n=1 �τ c
n

(5.45)

The sensitivity of saturation required for the inversion can be computed quickly with the
streamline-based method. More specifically, the sensitivity coefficient at cell c with respect
to the permeability at master point j is:
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Figure 5.26: The reference ln(k) field and saturation data at t = 200 days.
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where ni is the number of cells that streamline l passes before entering cell c. Here, the
weights are assumed to be unchanged in sensitivity computation. ∂Ssl

l
(τ c

l /t)

∂τc
l

can be computed
from analytical solution of Buckley-Leverett equation for the case of immiscible two-phase
displacement. For matching 4D seismic derived map of saturation changes at different times,
the same mathod can be used to compute the sensitivity coefficients of saturation changes
at any given time.

Next, the efficiency of incorporating multiphase production data (including fractional
flow rate and saturation distribution at given time) is demonstrated by using streamline-
based SSC method. The same reference field as in the previous section is used (see Figure
5.26). A nine well pattern is used to produce the oil from the reservoir with an injection well
at the center. All the production wells are producing at a constant rate of 400 RTB/day,
and the injection rate is 3200 RTB/day. The injected water and original oil in place has
mobility ratio of 5. The relative permeability curves for oil and water are of power-2 type
with residual oil and irreducible water saturations of zero. The water saturation at time of
200 days is shown in Figure 5.26.

It is important to note that mobility changes were accounted for during water flooding by
updating pressure field several times in the simulation process. The sensitivity coefficients
of fractional flow rate and saturation also account for such mobility change.

Figure 5.27 shows three initial realizations of (absolute) permeability fields and the
corresponding models updated by SSC method by matching the fractional flow rate data at
the 8 production wells and the saturation distribution data at 200 days. The same relative
permeability curves were used during the inversion (i.e., it was assumed that there is no
uncertainty in relative permeabilities). Clearly evident in this figure is the much closer
spatial variation features to the reference field in the updated models than in the initial
fields.
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Figure 5.27: Three initial and updated permeability fields.
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The saturation fields at 200 days in the initial and updated models are shown in Figure
5.28. It appears that the saturation fields at the initial models are largely deviated from
the reference field, whereas the results from the updated models are much closer to the
reference result, indicating a good matching. The ensemble averages (representing the large
scale smooth spatial patterns) and standard deviations (representing the uncertainty) from
100 updated models are given in Figure 5.29. It is apparent that most large scale spatial
features of the reference field in the averaged field, and the uncertainties between well
regions are reduced dramatically.

5.10 Exercise

5.10.1 Problem Setting

For the present problem, only two phases are considered. Again, for simplicity and appli-
cability of the supplied programs, we restrict ourselves to 2D with a uniform thickness of
100 ft. Areal extent of the reservoir is discretized by a 64× 64 grid of the dimension 100 ft
×100 ft. Other reservoir and fluid properties are: φ 0.2, B 1.4, μ 0.3 cp, and c 5.5 × 10−5

1/psia. Initial reservoir pressure is 3011.812 psia. A reference ln(k) distribution is available
(ref2d.dat). This is usually obtained from static (both hard and soft) data integration.
The mean and variance of ln(k) are 0.73 and 0.6084, respectively. The reference ln(k) dis-
tribution is modeled by a two-structure variogram model with no nugget effect. The first
structure is a spherical model with horizontal ranges 900 and 1400 ft and sill contribution
of 0.5, and the other is a Gaussian model with horizontal ranges 1500 and 3200 ft and sill
contribution of 0.5. There are 5 wells, located at the center of the grid blocks: (10,50),
(32,40), (40,40), (39,30) and (50,8). Each of these wells has the same wellbore radius of
0.33 ft. The wells in (10,50) and (50,8) are injectors injecting water at a constant rate of
400 and 500 (STB/DAY), respectively. While the other three are producing with constant
flow rates of 200, 300 and 400 (STB/DAY), respectively. No flow boundary is considered.

5.10.2 Steps Through the Multiple-Well Multi-Phase Inversion Exercise

S1 Perform forward flow simulation to obtain synthetic well test data.

This step is required only when well test data are not available from any other source.
A streamline-based reservoir simulator, mpsim, is supplied here. The parameter files
for mpsim is shown in Figure 5.30.

A number of data files are required for the program as shown in the Figure 5.30. The
reference logarithm permeability distribution is in file ref2D.dat. The boundary data
and initial pressure data for each grid cell are given in boundary.dat and pinit.dat,
respectively. Well flow rates and locations are in wellff.dat. While timestep.dat
contains the time step data for fractional flow calculation. Other data specified in the
above parameter file are realization numbers for the data to be used for the inversion,
debugging level, grid specifications, rock and fluid properties, number of wells and
producers, and number of streamlines to be used for fractional flow computation.
The output of the simulator, mpsim.out, presently solves for only the watercut values
at the producers. Formats of some of the data files are given below.
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Figure 5.28: Saturation fields before and after inversion.
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Figure 5.29: Ensemble ln(k) fields from 200 realizations.
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Boundary condition options and boundary flow rates are provided in data file
boundary.dat. This is shown below in Figure 5.31. The first line has 64(= ny)
records of value 0 indicating no flow condition for each cell in the top boundary. Next
64(= nx)lines have 2 records of value 0 indicating no flow condition for each cell in
the left and right boundaries. Again, next line has 64 records of value 0 for no flow
condition for each cell in the bottom boundary. In a similar format except for using
floating point numbers, subsequent 66 lines give the flow rates at each of the boundary
cells.

Parameters for MPSIM

**********************

START OF PARAMETERS:

../workdir/ref2D.dat -file with ln(k) data: first column

../workdir/boundary.dat -file with boundary conditions

../workdir/pinit.dat -file with initial pressure for the entire field

1 1 1 -total, start and end realization numbers

3 -debugging level

../workdir/mpsim.dbg -file for debug output

../workdir/mpsim.out -file for output of watercuts at the producers

64 50.0 100.0 -X grid size: nx, xmn, xsiz

64 50.0 100.0 -Y grid size: ny, ymn, ysiz

0.2 100 0.3 5.5e-5 -porosity, thickness, viscosity and compressibility

5 3 -no of wells, no of producers

../workdir/wellff.dat -file with well locations and flow rates

../workdir/timestep.dat -file with time steps for factional flow data

1000 -number of streamlines

Figure 5.30: Parameter file for the program, mpsim.

0 0 0 0 0 ... 0 0 0 0 0 0 0

.

.

.

0 0

0 0 0 0 0 ... 0 0 0 0 0

0. 0. 0. 0. 0. ... 0. 0. 0. 0. 0.

0. 0.
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.

.

0. 0.

0. 0. 0. 0. 0. ... 0. 0. 0. 0. 0.

Figure 5.31: Data file for boundary conditions and flow rates.
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Initial pressure data is provided in the file pinit.dat. Format of this data file is
shown here in Figure 5.32. First line gives the title of the file. Second line has only
record indicating the number of columns available in the file. Next few lines (as many
as the number of columns indicated before) have the column headers. Subsequent
64 × 64 lines give the initial pressure for each cell in the data grid.

Initial Pressure file

1

Initial Pressure (PSIA)

3011.812

3011.812

.

.

.

3011.812

3011.812

Figure 5.32: Data file for initial grid pressures.

Format of the well data specification file wellff.dat is shown in Figure 5.33. The
first line has two records: the number of wells and the number of producing wells.
Subsequent lines have 4 records for each well: i- grid, j- grid of the well, flow rates
(STB/DAYS), and the wellbore radius (ft). Specifications for all the producers must
be entered first in any order, then all the injectors.

5 3

32 40 -200 0.33

40 40 -400 0.33

39 30 -300 0.33

10 50 400 0.33

50 8 500 0.33

Figure 5.33: Data file for well locations and flow rates.

Time step data for the fractional flow computation is specified in Figure 5.34. First
record is the number of time steps. Subsequent lines have the time (DAYS) for
watercut computation.
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Figure 5.34: Data file for time steps for fractional flow computation.

N1 It should be noted that the simulation time for the fractional flow computation
should be long enough to have non-zero fractional flow values at the producers.
Particularly, when the wells are widely separated. The exercise given is typical
of sparsely spaced wells. Thus the simulation time is quite high.

N2 The mpsim program does not give the pressure values for the pressure match in
the next stage. User should get the pressure data using a simulator unless one
is working with real data set. However the conditions should be similar. For the
present problem, we have obtained using Eclipse100.

N3 Users should examine the fractional flow data and pressure data to ensure their
compatibility. Fractional flow data can also be measured with any standard
finite-difference simulator. Data from different sources should be coherent.

S2 Integrate well test and fractional flow data.

The sscmp program is used for the integration of multiple-well single-phase dynamic
data inversion. Parameter file, sscmp.par, for sscmp is shown below in Figure 5.35.

Parameters for SSC

*******************

START OF PARAMETERS:

******* -file with local well conditioning ln(k) data

1 2 3 4 -columns for X, Y coordinates, ln(k) & error

0 5 -num of ln(k) data & num of wells with flow data

1 -index for identifying desired histogram

../workdir/ref2D.dat -file with ln(k) histogram (scale of SSC model)

2 0 -columns for permeability and weight

0.73 0.6084 -mean and variance of ln(k) distribution

../workdir/wellpara.dat -file with reservoir and well data

../workdir/flowrate.dat -file with input flow rate and time step data

../workdir/wellpress.dat -file with input pressure data

../workdir/boundary.dat -file with boundary conditions

../workdir/pinit.dat -file with initial pressure for the entire field

../workdir/seed.dat -file with input realizations

1 1 1 -number of total, start and end realizations
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-999.0 1.0e21 -trimming limits for missing values

3 -debugging level

../workdir/ssc2d.dbg -file for debug output

../workdir/ssc2d.out -file for output ln(k) realizations

../workdir/obj2d.out -file for output objective function after each iter

../workdir/prematch2d.out -file for output matching of pressure responses

../workdir/fwmatch2d.out -file for output matching of fractional flow rates

64 50.0 100.0 -X grid size: nx, xmn, xsiz

64 50.0 100.0 -Y grid size: ny, ymn, ysiz

38774 -random number seed

5 5 -number of master points in X and Y

3 -number of outer iterations to update master points

3.0 -factor for defining constraint interval for optim.

15 0.3 0.01 -max num of outer iter, dumping para & min tol

50 5.e-4 5.e-4 5.e-3 40 -optimization parameters

2000. -search radius for kriging

1 24 -min and max num of samples for kriging

0 -type of kriging

2 0.0 -number of nested structures, nugget effect

1 0.5 0.0 900.0 1400.0 -type, sill, azm, max range, min range

1 0.5 0.0 1500.0 3200.0 -type, sill, azm, max range, min range

0.2 100. 0.3 5.5e-5 -porosity, thickness,viscosity and compressibility

5 3 -number of wells, number of producers

../workdir/wellff.dat -well locations and flow rates

../workdir/fraction.dat -fractional flow data at wells

1000 -number of streamlines

Figure 5.35: Parameter file for sscmp.

No conditioning data was used in this inversion exercise. However, there is an option
to incorporate it. Some of the data files used in the previous step are also required for
the sscmp program. They are ref2D.dat, pinit.dat, boundary.dat, wellff.dat,
fraction.dat. Other new files are wellpara.dat, flowrate.dat, wellpress.dat
and seed.dat. Format of these files will be discussed later. The values for the geo-
metric mean of the reference permeability field and the variance are required. These
values are 0.73 and 0.6084 respectively. The realization numbers, grid specifications
should be the same as that used in the previous step. A random number seed is
needed. This seed should be changed from one realization to other, otherwise this
might create some artifact in the inversion responses. The number of “master points”
used here is 25 (=5 × 5). Maximum number of outer iterations to update the master
points is 3. A factor of 3.0 is used for defining constraint interval for optimization.
Maximum number of outer iteration, relaxation parameter and minimum tolerance are
15, 0.3 and 0.01 respectively. Optimization parameters are 50, 5.0× 10−4, 5.0× 10−4,
5.0 × 10−3 and 40. These are minimum number of iterations, tolerances for checks
of norm 1, norm 2 and difference in objective functions in two consecutive iterations,
and number of times the differences of two consecutive objective functions becomes
less than the tolerance specified, respectively. A search radius of 2000 ft is used for
kriging. Minimum and maximum number of samples for kriging are 1 and 24. Type
of kriging used is “ordinary kriging” indicated by 0. The other option available is
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“simple kriging” indicated by 1. The variogram model from the reference distribution
is used.

Reservoir and well data are given in wellpara.dat, which is shown below in Figure
5.36. First line in the data file has 5 records. These are number of wells: 5, φ 0.2,
thickness 100 ft, μ 0.3 cp, and c 5.5 × 10−5 1/psia. The subsequent 5 lines give i, j
locations and wellbore radius of each well.

5 0.2 100.0 0.3 5.5e-5

10 50 0.33

32 40 0.33

40 40 0.33

39 30 0.33

50 8 0.33

Figure 5.36: Data file for reservoir and well parameters.

Flow rate data to be used for pressure solver are given in data file flowrate.dat.
Format of this data file is excerpted here in Figure 5.37. The only record in the first
line is the number of time steps (31). Number of time steps for the pressure match
can be different than that for the fractional flow rates match. For each time step, 6
records must be there in the subsequent lines. These records are time in days, and
flow rates of the five wells in appropriate order.

31

0.050 -200.00 -500.00 -300.00 500.00 500.00

0.100 -200.00 -500.00 -300.00 500.00 500.00

0.150 -200.00 -500.00 -300.00 500.00 500.00

... ... ... ... ...

73.250 -200.00 -500.00 -300.00 500.00 500.00

83.250 -200.00 -500.00 -300.00 500.00 500.00

108.250 -200.00 -500.00 -300.00 500.00 500.00

Figure 5.37: Data file for flow rates.

Well pressure data are in the data file wellpress.dat. The format of this file is shown
below in Figure 5.38. The two records in the first line are number of wells (5) and
number of time steps (31). Following lines have 11 records: time in days, and pressure
(psia) and weight data for the five wells.
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5 31

0.05 2946.459 1 2858.672 1 2936.361 1 3137.493 1 3186.552 1

0.10 2942.027 1 2848.395 1 2930.264 1 3144.553 1 3195.262 1

0.15 2938.360 1 2840.412 1 2925.454 1 3150.012 1 3202.450 1

... ... ... ... ... ...

73.25 2807.779 1 2669.026 1 2788.330 1 3480.633 1 3699.485 1

83.25 2799.394 1 2660.556 1 2780.258 1 3482.374 1 3700.966 1

108.25 2780.776 1 2641.672 1 2762.157 1 3481.644 1 3697.354 1

Figure 5.38: Data file for well pressures.

The sscmp program requires an initial seed file for the permeability. This has the
same format as the file ref2D.dat with reference permeability data.

N4 Users should determine histograms, variograms of the generated realizations and
check how good are the histogram, variogram reproduction. Adjustments should
be done by tuning different parameters in order to get better reproductions.

N5 One might be interested in exploring the cases for increased maximum number
of outer iterations, or finer tolerances.

N6 The objective function values, the pressure match, the fractional flow match
should be inspected to check whether a good optimization is obtained.

S3 Generate fine scale models with simulated annealing technique.

One can downscale coarse grid inverted permeability distributions to higher resolution
fine scale models with the program, sasim. Specifications are almost similar to sasim
program used in Chapter 4. Information about the parameter file and the code can also
be found in GSLIB [61]. Interested readers can perform the downscaling; programs
and parameter files are supplied here.

S4 Suggested sensitivity analyses.

� Sensitivity to number of master points, search radius for kriging, number of
samples used for kriging can be performed.

� Sensitivity to initial seed of ln(k) distributions can be interesting.

� It is often difficult to get a good variogram model. One logical sensitivity study
can focus on variogram structures. With different variogram models, the inver-
sion process can be repeated and uncertainty due to variograms can be estimated.

� Sensitivity to initial pressures, fluid properties, reservoir dimensions can be an-
alyzed.



Chapter 6

Future Developments

Since the eighties, the industry has recognized the need for reservoir characterization with
dynamic data. Dynamic data integration, in the name of history matching, has been ex-
istent for a long time. Of course, there are basic differences between the two. In dynamic
data integration, the primary objective is to construct geologically realistic high resolution
reservoir models. The uncertainty due to insufficient data should be reduced to a reasonable
extent by differences in the constructed reservoir models.

This monograph presents some recent methods of dynamic data integration in reservoir
characterization. Current methods appear to be quite promising with their efficiency and
ability to integrate a variety of data. Uncertainty analysis by constructing equiprobable
multiple realizations has not been considered in many of the techniques available. The
methods discussed here obviate such limitation. Another notable feature, is the ability to
construct geological facies into the models.

Notwithstanding these versatile features, there is still a lot to achieve in this field of
research. Complex reservoir scenarios with changing conditions are yet to be characterized
properly or efficiently. Moreover, commercial applications are still rare. Even the available
techniques are devoid of the level of sophistication and versatility required for realistic
application.

As described in Chapter 5, the multiphase inversion responses illustrate that the spatial
permeability variation can be identified with less uncertainty by integrating more produc-
tion data. While pressure data contain information on relatively large scale trends around
the wells, fractional flow rate data provide additional information on the spatial connec-
tivity between pairs of wells. Matching pressure or fractional data alone resulted in higher
uncertainty in the inverse results than were obtained by integrating both pressure and frac-
tional flow rate data jointly. The joint inversion significantly improved the representation
of reservoir heterogeneity. Matching only production data without the benefit of extensive
seismic, geologic and petrophysical data, performance predictions were made beyond the
period of matched data. It reveals that matching pressure data only, although the predic-
tions are improved, is not that reliable for prediction of fractional flow, even at the same
wells in which the pressure data were matched. However, good reservoir performance pre-
dictions can be obtained when the early time production data at the same wells with similar
flows and well conditions are matched. Also, poor predictions can be obtained when the

165
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early time production data at the wells being predicted are not matched, or well and flow
conditions are changed between the calibration stage and the prediction stage.

Envisaging the limitations and the range of applicability of the methods, the future
course of research requires to focus on the following avenues:

� Extension of the techniques to true multiphase flow that can handle mobility changes
during the course of production is needed. In such cases, for streamline method, the
pressure solution and thus streamline geometry need to be updated with time through
the simulation. However, it has been found that streamline methods are inadequate
to simulate true multiphase situations with complex heterogeneities. Adopting finite-
difference, finite-element or finite-volume formulation into the inversion algorithm
will be more realistic approach. The counterbalance between computational cost and
realistic simulation features needs to be resolved.

� The SSC mothodology is not limited to streamline-based simulator. It applies to any
type of flow simulators. For finite-difference or finite-element methods, efficient ways
of computing required sensitivity coefficients are needed. This remains to be a future
challenge.

� Extensive 3D reservoir characterization with dynamic data has not yet found its place
in practice. It is necessary for more practical use of this method to model separated-
layer geology when production data such as production rate profiles along the bore-
holes are available. Most of the studies to date encompass some averaged 2D reservoir
models which are subsequently downscaled to higher resolution 3D models.

However, it is impractical to invert reservoir models directly at fine scale due to
the computational intensity. Yet, most production data usually inform large scale
variation features in the reservoir. It is important to invert reservoir models at a scale
appropriate to the production data [178].

� Provision for changing well conditions through time, e.g. new drilling, recompletions,
workovers, infills, etc. In case of streamline-based simulators, as new wells are drilled,
old wells shut in or recompleted, etc. the streamlines change, hence necessitating sig-
nificant coding and testing to handle such situations. For finite-difference simulators,
although adding these features will not increase algorithmic complexities, the rate of
convergence will be reduced.

� Similar situations arise for reservoirs with complex wells. Inversion of production
data from complex wells, e.g. deviated, horizontal, multiply completed, partially
penetrated, gas-lift, etc. needs to be investigated.

� Inversion of saturation data, although discussed in brief in Section 5.9, needs further
investigation. It was also pointed out in Chapter 5 that incorporation of saturation
data reduces uncertainty in reservoir performance prediction. The streamline-based
method was applied to invert saturation data made available from well logs or 4D
seismic data (see also [118]). Incorporation of saturation data in the finite-difference
formulation may require larger storage and more intensive computation.
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� The inverse problem being solved here pertains to highly nonlinear coupled systems of
equations. Simultaneous techniques are more appropriate for such coupled problems.
Based on the similar philosophy, simultaneous inversion of porosity, permeability and
lithofacies will generate more realistic reservoir models. This will account for the
interrelationships between the variables to be projected. However, this is only possible
at the expense of the solutions of the problems involving even larger matrices.

� Honoring soft information (e.g., seismic data) during inversion is an important issue
in reservoir charcterization. One solution is to use “p-field” concept and the SSC
method can be used to update probability field of a reservoir model where the prior
distribution conditional to the soft data has been determined [23].

� With the depletion of most onshore petroleum reserves, exploitation of the off-shore
reserves is in the offing. It is typical, in these situations, to have sparse information
about a large extent of the reservoirs. In the presence of such sparse data, the major
issues are the boundary delineations and conditions for example amount of aquifer
influx, etc. Also complex stratigraphy and structures including partially transmissible
faults exist in many reservoir environment. Characterization of these reservoirs with
the dynamic data is challenging as the space of uncertainty is enormous. Future
research in the field should expound these issues.

One technique to tackle these problems partly is the incorporation of probabilistic
determination of faults, structures, reservoir volumes, etc. Ideas and experiences
from domain decomposition techniques, multilevel adaptive techniques, fast adaptive
composite grid techniques, local defect correction methods may also be explored. It
must be noted that analogies can be substantiated with all these techniques and the
techniques discussed in this monograph within some suitable framework. Abstractly,
one can analogize the master point concept as a “restriction” on the domain, while the
spreading of the optimal perturbation field in the SSC method as a “prolongation”
from the restricted space to the original domain.

� Although it was briefly discussed in Chapter 3, incorporation of hydraulic anisotropy
with kx, ky and kz has not been properly implemented in the inversion algorithm.
Heterogeneous hydraulic anisotropy is a rigor which must be adopted in the inver-
sion techniques to obtain more realistic reservoir models. It must be remarked that
incorporation of the diagonal permeability tensor will be sufficient in most cases.

� The inversion techniques should be able to handle process specific reservoir situations.
Provision for different reservoir drive mechanisms, e.g. reservoirs with gravity segre-
gation drive, bottom-water drive, edge-water drive, steam assisted gravity drainage
mechanism, waterflooding, etc. will be more rationalistic. From reservoir simulation
experience, it can be said that finite-difference formulation will be more appropriate
than the streamline-based formulation.

� With a few exceptions, almost all the inversion techniques available to date suppress
the time variation in the phase relative permeabilities and other fluid properties. A
more realistic algorithm will account for such variations.
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� Outreach for the inversion of compositional production data is in the foreseeable
future. The reason for this is that there exists a growing tendency in the industry to
use compositional flow simulation in more and more practical cases. However, ideas
are yet to be carved in a concrete manner.

� Most importantly, extensive field application and testing is required, which will stim-
ulate research into problems not yet investigated.



Appendix A

Acronyms and Notations

A.1 Acronyms

CPU: central processing unit

GOR: gas oil ratio

GPST: generalized pulse spectrum technique

MDH: Miller-Dyes-Hutchinson plot (a plot of drawdown versus the logarithm of time)

mNAD: mean normalized absolute deviation

mNE: mean normalized error

pdf: probability density function

SGI: Silicon Graphics, Inc.

SSC: sequential self-calibration

STB: stock tank barrel

VTP: vertical tracer profile

WIPP: Waste Isolation Pilot Plant

A.2 Common Notation

asl
s : flow rate associated with the streamline, s

A: a constant defining volume of averaging (in Equation 3.9, dependent on the definition
of r(t))

A: a scaling factor defining volume of averaging (in Equation 3.17)

[A]: transmissibility matrix (which accounts for spatial and time discretizations, as well as
boundary conditions)
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B: formation volume factor (res vol/std vol)

[B]: right hand side matrix in the flow equation (accounts for time discretization and flow
boundary conditions)

c: fluid compressibility (1/psi)

ct: total compressibility (1/psi)

d: a measurement of model response (nonlinear function of the parameter vector, a)

Ei: exponential integral function

f : fractional flow rate

{f}t: fractional flow rate matrix at time t

fj(t): fractional flow rate at location j and time t

f ′
j(t): induced fractional flow rate at location j and time t due to permeability perturbation

f cal
j (t): numerically calculated fractional flow rate value at well j and time t

f obs
j (t): measured fractional flow rate data at well j and time t

f sl
s (t): fractional flow of sreamline s at time t

ft: feet

g(a): a nonlinear function of vector a

Γ(k): Gamma function of argument k

h: thickness of the reservoir (ft)

k: absolute permeability (md)

k: average permeability

k′: perturbed permeability field

Δkm: permeability perturbation due to master point location m

ke: effective permeability

K(rD, tD): weighting function

L: half domain size

LD: dimensionless half domain size

λ0
j and λg

j : kriging weights attributed to master point j, cells 0 and g

λ1: correlation length of maximum continuity
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λ2: correlation length of minimum continuity

λ1
λ2

: anisotropy ratio of permeability field

m: slope of the semilog plot

μ: viscosity (cp)

max: maximum

min: minimum

N : number of values

Nt: number of time levels for simulation

nm: total number of master points

ns,c: number of cells crossed by a streamline s from injector to producer

ntf : number of time steps for fractional flow measurements

ntp: number of time steps for pressure measurements

nwf : number of wells that have fractional flow data

nsl
wf : total number of streamlines arriving to well wf

nwp: number of wells that have pressure data

O: objective function

ω: average power parameter defining type of averaging

p: pressure (psi)

{p}t: pressure matrix at time t

Δp: pressure drawdown

pi: initial reservoir pressure (psi)

pi(t): pressure at location i at time t

pcal
i (t): numerically calculated pressure value at well i and time t

pD: dimensionless pressure

pobs
i (t): measured pressure data at well i and time t

pwf : well flowing pressure

p(r, t): pressure at radial distance r (ft) and time t (hours)

p(t): observed well pressure at time t
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p(u, t): observed pressure at well location u and time t

p(u′, t): observed pressure at well location u′ and time t

pwf : well bore flowing pressure

P j
i , j = 1, . . . , Ni: calibrated relationship of facies proportion

φ: porosity (pore vol/bulk vol)

Ψ(k): Euler’s Psi function of argument k

q: flow rate (STB/d)

q(u, t): observed well flow rate at location u and time t

q(u′, t): observed well flow rate at location u′ and time t

qo: oil flow rate (STB/d)

qg: gas flow rate (STB/d)

qw: water flow rate (STB/d)

qsl
s : flow rate associated with streamline s

r: radial distance from the well bore (ft)

rD: dimensionless radius

rw: well bore radius (ft)

ρ: correlation coefficient

S: sensitivity coefficient matrix, also saturation

sf,m,t(j): sensitivity coefficient of fractional flow rate at point j due to permeability per-
turbation at master point location m

sp,m,t(i): sensitivity coefficient of pressure at point i due to permeability perturbation at
master point location m

σ2: variance

t: time (hours)

ti: time level for simulation

tD: dimensionless time

T : transmissibility

τs: time-of-flight of streamline s
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Δτs,c: associated time-of-flight for streamline s to pass through cell c

u,u ∈ A: a location within the entire space, A

V : annular region

w: number of well locations (w = 1, . . . , nw)

W1/2,1/2(z): Whittaker’s function of arguments z, 1/2 and 1/2

Wf (j, t): weight assigned to fractional flow rate data at well j and time t

Wp(i, t): weight assigned to pressure data at well i and time t

x, y, z: dimensions of cell (Cartesian coordinate system)

Δx,Δy,Δz: set out changes in cell dimensions





Appendix B

Computer Codes

This appendix presents brief explanations of the main parameters required for all the sup-
plied programs. The programs are arranged in order as one will come across while pursuing
the inversion exercises. First four programs are for single-well single-phase inversion: spsim,
wtperm, swspcali and swsasim. Next two programs are for multiple-well single-phase
inversion: ssc and sasim. Finally, last two programs are for multiple-well multi-phase
inversion: mpsim and ssc mp.

The source code, parameter files, data files for the exercises, and output files are provided
on the distribution compact disk.

B.1 Program: spsim

The spsim program is for single-well single-phase flow simulation. It assumes constant rock
and fluid properties: formation volume factor, porosity, reservoir thickness, fluid viscosity
and fluid compressibility. This program also allows more than one well (at most 5, here).
The flow rates are considered to be same for all the wells. The rates must be constant over
the entire simulation period. Locations for all the wells with their radius should be specified.
Time step control is possible with the code. The parameters required are documented below:

� datafl: the data file with ln(k) distribution in GEOEAS format.

� ivar: the column number of ln(k) data.

� idbg: an integer debugging level between 0 and 3. The larger the debugging level,the
more information written out.

� dbgfl: the file for the debugging output.

� outfl: the pressure solution is written in this file. The output file will contain time
and pressure columns.

� nx, xmn, xsiz: the definition of the grid system (x axis).

� ny, ymn, ysiz: the definition of the grid system (y axis).
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� pinit: the initial pressure (psia).

� fvf, poro, thick, visco, comp: formation volume factor, porosity, reservoir thick-
ness (ft), fluid viscosity (cp) and fluid compressibility (1/psia).

� nwell, rate: the number of wells and flow rate (STB/DAYS).

� iw, jw, rw: for each of the nwell wells one must define the x and y locations and
wellbore radius (ft).

� tsmin, tsmax, tmax, tfact, ntcon: the minimum time step, the maximum time
step, the maximum total time, the factor for time increase/decrease, and the number
of time step control.

� nsp, tsp: for each ntcon time step control one must define number of steps and
length of time step (DAYS).

B.2 Program: wtperm

The wtperm program is for the interpretation of well test pressure decline data to effective
permeability. It uses the output data from a single-well single-phase reservoir flow simula-
tion. The format of the input data is discussed in the exercise problems. All the reservoir
and fluid properties must correspond to the input data. The parameters required are shown
below:

� datafl: the data file with single-well single-phase well test data.

� ivt, ivp: the column numbers of time (DAYS) and pressure (psia) data.

� outfl: the file for output well pressure drawdown and effective permeability. There
are 6 columns: time (DAYS), pressure (psia), logarithm of time (DAYS), pressure
drawdown (psia), slope, and effective permeability (md).

� nsim, nstep: the number of realizations and time steps.

� nx, xmn, xsiz: the definition of the grid system (x axis).

� ny, ymn, ysiz: the definition of the grid system (y axis).

� pinit: the initial pressure (psia).

� rate, fvf, phi, thick, visco, comp: flow rate (STB/DAYS), formation volume
factor, porosity, reservoir thickness (ft), fluid viscosity (cp) and fluid compressibility
(1/psia).

� iw, jw, rw: x and y locations and wellbore radius (ft).
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B.3 Program: swspcali

The swspcali program is for calibrating the optimal (A,ω) to fit the effective permeability
and time data for any angled-anisotropic case. Effective permeability data are those ob-
tained from the program, wtperm. User-specified resolution for the optimal parameters is
possible through the discretization of the corresponding ranges. Reservoir and fluid prop-
erties must be the same as before. User has to specify the time limits, which should be
interpreted from the “semilog” plots of drawdowns or slopes. The required parameters are
explained below:

� datafl: the data file with ln(k) in GEOEAS format.

� iv: the column number of ln(k).

� effkfl: the data file for effective permeability.

� ivt, ivk: the column numbers of time (DAYS) and effective permeability (md).

� outfl: the output file for errors. There are 5 columns: log(A), ω, normalized absolute
deviation, normalized error, and sum of normalized absolute deviation and normalized
error.

� outfl2: the output file for weighted averages. There are 3 columns: logarithm of
time (DAYS), well test derived effective permeability (md), and weighted averages of
permeability (md).

� indwei: the index option for outputting kernel weights. If set to 1, kernel weights
output will be written.

� weightfl: the output file for kernel weights. This file will be generated only if indwei
is set to 1.

� nx, xmn, xsiz: the definition of the grid system (x axis).

� ny, ymn, ysiz: the definition of the grid system (y axis).

� clx, cly: the correlation lengths for anisotropy annular region.

� angcl: the angle of maximum correlation length.

� iw, jw, rw: the well location and wellbore radius (ft).

� tmin, tmax: the minimum and the maximum values of logarithm of time (DAYS)
from well test data.

� ami, amx, nloga: the minimum, the maximum and the number of discretizations
for log(A).

� omgmin, omgmax, nomg: the minimum, the maximum and the number of dis-
cretizations for ω.
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� mcn, nstep, tgmean: the number of realizations, the number of time step, and the
geometric mean of permeability (md).

� invstep: the step interval for fitting effective permeability.

� flow, fvf, visc, phi, thic, comp: flow rate (STB/DAYS), formation volume factor,
fluid viscosity (cp), porosity, reservoir thickness (ft) and fluid compressibility (1/psia).

� id pk: the option for quickly picking log(A) and ω.

� alg pk, omg pk: quickly picked log(A) and ω.

B.4 Program: swsasim

The swsasim program is a simulated annealing based simulation program to generate high
resolution permeability distribution. The method can use up to seven different objective
functions: histogram, variogram, indicator variogram (useful lithofacies or other soft data),
correlation coefficient, conditional distributions, coarse grid distributions, and well test ef-
fective permeability data. Any combination may be considered in a total objective function.
Although the relative weighting is determined automatically, it is often necessary to adjust
the weights to arrive at the weights to arrive at solutions where all components tend to
zero. The parameters required for the program are shown below:

� val: indices for considering histogram, variogram, indicator variogram, correlation
coefficient, conditional distributions, coarse grid distributions, and well test effective
permeability. Activated when the indices are to 1.

� userfac: user defined weights for each of the seven objective functions.

� ilog: the log transform flag. If set to 1, log transformation will be performed.

� nsim: the number of simulations.

� nx, xmn, xsiz: the definition of the grid system (x axis).

� ny, ymn, ysiz: the definition of the grid system (y axis).

� nz, zmn, zsiz: the definition of the grid system (z axis).

� ixv: the random number seed.

� idbg: an integer debugging level between 0 and 3. The larger the debugging level,
the more information written out.

� dbgfl: the file for the debugging output.

� outfl: the output file for ln(k) distribution in GEOEAS format.

� isas: flag for automatic schedule. If set to 0, the annealing schedule will be automatic.
If set to 1, one must define the annealing schedule in the subsequent line.
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� t0, redfac, kasas, ksas, num, omin: user set annealing schedule. The parameters
are: initial temperature, reduction factor, maximum number of perturbations at any
one given temperature, target number of acceptable perturbations at a given temper-
ature, the stopping number (maximum number of times that kasas is reached), and
a low objective function value indicating convergence.

� maxswap,rreport: maximum number of perturbations (will be scaled by nx·ny ·nz).
After a fixed number of perturbations (rreport scaled by nx · ny · nz) the objective
function is written to the screen and the debugging file.

� maxnochange: the simulated annealing will be halted after maxnochange pertur-
bations without a change.

� icond: set to 1 if there is conditioning data (0 implies no conditioning data).

� condfl: an input data file with the conditioning data in simplified GEOEAS format.
If this file does not exist, then an unconditional simulation is generated.

� ixloc, iyloc, izloc, ivrl: the column numbers for the x, y, and z coordinates and
the variable to be simulated. One or two of the coordinate column numbers can be
set to zero, which indicates that the simulation is 2D or 1D.

� tmin, tmax: all values strictly less than tmin and strictly greater than tmax are
ignored.

� ihist: set to 1 if the histogram should be taken from the following file (set to 0 if not).

� histfl: an input data file with histogram in simplified GEOEAS format.

� ihvr, ihwt: the column numbers for the variable to be simulated and a declustering
weight.

� nhist: number of quantiles for the histogram objective function.

� nicut: number of indicator variograms to consider. The threshold values (in units of
the primary variable) are input next and the variograms are input directly after the
direct variogram of the primary variable with the same format.

� icut: the threshold values (in units of the primary variable) for each of the nicut
indicator variograms.

� secfl: an input data file with the secondary variable model (needed if cosimulation is
being performed).

� icsecmod: the column number for the secondary variable in secfl.

� ivavg: if set to 1, then the correlation applies to the secondary variable and a ver-
tical average of the variable being simulated. Otherwise, the secondary variable is
considered at each grid node location.
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� corr: the correlation coefficient (used if the fourth component objective function is
turned on).

� datafl: an input file with bivariate data to define the conditional distributions in
simplified GEOEAS format.

� icpri, icsec, icwt: the column numbers for the primary, secondary variables and the
declustering weights in datafl.

� zmin, zmax: all values strictly less than zmin and strictly greater than zmax are
ignored.

� npricut: number of thresholds to define the conditional distributions of the primary
variable within a class of the secondary variable.

� nseccut: number of thresholds to define the classes of secondary variable.

� nlag: the number of variogram lags to consider in the objective function. The closest
nlag lags, measured in terms of variogram distance, are retained.

� isill: a flag specifying whether or not to standardize the sill of the semi-variogram to
the variance of the univariate distribution (isill=1 will standardize).

� nst and c0: the number of variogram structures and the isotropic nugget effect.

� For each of the nst nested structures one must define it, the type of structure; cc, the
c parameter; ang1, ang2, ang3, the angles defining the geometric anisotropy; aa,
the maximum horizontal range; aa1, the minimum horizontal range, aa2, the vertical
range.

� Indicator variograms follow the definition of the direct primary variable variogram.

� itemp, ntmp: option for local updating (0 = global update, 1 = local update) and
number of cells in template.

� ltail, ltpar: lower tail option for local conditional pdf.

� middle, mpar: middle option for local conditional pdf.

� utail, utpar: upper tail option for local conditional pdf.

� fnkbar: file with desired coarse scale k field.

� nxcs, xmncs, xsizcs: definition of the coarse grid system (x axis).

� nycs, ymncs, ysizcs: definition of the coarse grid system (y axis).

� nzcs, zmncs, zsizcs: definition of the coarse grid system (z axis).

� omega, id csag: power omega and index to conform average permeability at initial.

� wtkefl: file with well test derived effective permeability.
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� ivt, ivk: the column numbers for time and effective permeability in wtkefl.

� alg, omega wt: the optimal log(A) and ω from calibration.

� iw wt, jw wt, rw: the location of testing well and wellbore radius (ft).

� clx, cly: the correlation lengths for anisotropic annular region.

� angcl: the angle of maximum correlation length.

� wttmin, wttmax: the minimum and the maximum values of logarithm of time
(DAYS) in well test.

� flow, fvf, visc, phi, thic, comp: the flow rate (STB/DAYS), formation volume
factor, fluid viscosity (cp), porosity, reservoir thickness (ft), and fluid compressibility
(1/psia).

B.5 Program: ssc

The sequential self-calibration (SSC) method is extended for integrating dynamic multiwell
production data [189]. A FORTRAN program, ssc, has been developed implementing the
SSC methodology. The flowchart of ssc code is shown in Figure 4.1 in Chapter 4. This ssc
code allows to generate a series of permeability realizations that honor a specified spatial
variation structure defined by histogram and variogram, yet match dynamic multiple well
production data.

The reservoir model is assumed 2-D rectangular discretized into Nx by Ny square cells
with the size of each cell being dx = dy. The grid cells are numbered as shown in Figure
B.1. Parameters required for ssc are given below:

� datafl: the file with local well conditioning ln(k) data.

� ixl, iyl, ivrl, ivrrl: the column numbers for x, y coordinates, ln(k) and error.

� ntmed, nwell: the number of ln(k) data and the number of wells with flow data.

� itrans: the index for identifying desired histogram.

� transfl: the file with ln(k) histogram. Should be of the same scale as the SSC model.

� ihv, ihwt: the column numbers for ln(k) and weight.

� tms0, vtms0: the mean and the variance of ln(k) distribution.

� wellpmfl: the data file with reservoir and well parameters. Records in this file are
discussed in the exercise.

� flowrtfl: the data file with input flow rate (STB/DAYS) and time step data. Records
in this file are discussed in the exercise.

� wellprfl: the data file with input pressure data (psia). Records in this file are dis-
cussed in the exercise.



182 APPENDIX B. COMPUTER CODES
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Figure B.1: Discretization and numbering of numerical reservoir model used in the ssc code.

� boundfl: the data file boundary data. Records in this file are discussed in the exercise.

� initprfl: the data file with initial pressure (psia) for the entire reservoir in GEOEAS
format.

� seedfl: the data file with initial ln(k) field in GEOEAS format.

� nsim, nsim1, nsim2: the number of total, start and end realizations.

� tmin, tmax: all values strictly less than tmin and strictly greater than tmax are
ignored.

� idbg: an integer debugging level between 0 and 3. The larger the debugging level,
the more information written out.

� dbgfl: the file for the debugging output.

� outfl: the output file for ln(k) distribution in GEOEAS format.

� objfl: the output file for normalized objective function after each iteration . The
first two records and the last records are total number iteration, initial normalized
objective function, final objective function value.

� prmtchfl: the output file for pressure match responses. This gives the observed, the
initial and the updated pressures at each time step in GEOEAS format.

� nx, xmn, xsiz: the definition of the grid system (x axis).

� ny, ymn, ysiz: the definition of the grid system (y axis).
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� iseed: the random number seed.

� nmpx, nmpy: the number of master points in x and y directions.

� it gmp: the number of iterations to update master points.

� am y: the factor for defining the constraint interval for optimization.

� nitera, relax, dconve: the maximum number of outer iterations, dumping param-
eter and minimum tolerance.

� it min, eps3, eps4, eps5, ifobj: the optimization parameters.

� radius: the search radius (ft) in kriging.

� ndmin, ndmax: the minimum and the maximum number of samples for kriging.

� ktype: the type of kriging. (ktype=0 ordinary kriging, ktype=1: simple kriging).

� nst and c0: the number of variogram structures and the isotropic nugget effect.

� it, cc, ang, aa1, aa2: For each of the nst nested structures one must define the
type of structure, the c parameter, the angle defining the geometric anisotropy, the
maximum horizontal range, the minimum horizontal range.

B.6 Program: sasim

The sasim program is a simulated annealing based simulation program to generate high res-
olution permeability distribution. The method can use upto six different objective functions:
histogram, variogram, indicator variogram (useful lithofacies or other soft data), correla-
tion coefficient, conditional distributions, and coarse grid distributions. The parameters
required for the program are shown below:

� val: indices for considering histogram, variogram, indicator variogram, correlation
coefficient, conditional distributions, coarse grid distributions, and well test effective
permeability. Activated when the indices are to 1.

� userfac: user defined weights for each of the seven objective functions.

� ilog: the log transform flag. If set to 1, log transformation will be performed.

� nsim: the number of simulations.

� nx, xmn, xsiz: the definition of the grid system (x axis).

� ny, ymn, ysiz: the definition of the grid system (y axis).

� nz, zmn, zsiz: the definition of the grid system (z axis).

� ixv: the random number seed.
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� idbg: an integer debugging level between 0 and 3. The larger the debugging level,
the more information written out.

� dbgfl: the file for the debugging output.

� outfl: the output file for ln(k) distribution in GEOEAS format.

� isas: flag for automatic schedule. If set to 0, the annealing schedule will be automatic.
If set to 1, one must define the annealing schedule in the subsequent line.

� t0, redfac, kasas, ksas, num, omin: user set annealing schedule. The parameters
are: initial temperature, reduction factor, maximum number of perturbations at any
one given temperature, target number of acceptable perturbations at a given temper-
ature, the stopping number (maximum number of times that kasas is reached), and
a low objective function value indicating convergence.

� maxswap,rreport: maximum number of perturbations (will be scaled by nx·ny ·nz).
After a fixed number of perturbations (rreport scaled by nx · ny · nz) the objective
function is written to the screen and the debugging file.

� maxnochange: the simulated annealing will be halted after maxnochange pertur-
bations without a change.

� icond: set to 1 if there is conditioning data (0 implies no conditioning data).

� condfl: an input data file with the conditioning data (simplified GEOEAS format).
If this file does not exist, then an unconditional simulation is generated.

� ixloc, iyloc, izloc, ivrl: the column numbers for the x, y, and z coordinates and
the variable to be simulated. One or two of the coordinate column numbers can be
set to zero, which indicates that the simulation is 2D or 1D.

� tmin, tmax: all values strictly less than tmin and strictly greater than tmax are
ignored.

� ihist: set to 1 if the histogram should be taken from the following file (set to 0 if not).

� histfl: an input data file with histogram in simplified GEOEAS format.

� ihvr, ihwt: the column numbers for the variable to be simulated and a declustering
weight.

� nhist: number of quantiles for the histogram objective function.

� nicut: number of indicator variograms to consider. The threshold values (in units of
the primary variable) are input next and the variograms are input directly after the
direct variogram of the primary variable with the same format.

� icut: the threshold values (in units of the primary variable) for each of the nicut
indicator variograms.
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� secfl: an input data file with the secondary variable model (needed if cosimulation is
being performed).

� icsecmod: the column number for the secondary variable in secfl.

� ivavg: if set to 1, then the correlation applies to the secondary variable and a ver-
tical average of the variable being simulated. Otherwise, the secondary variable is
considered at each grid node location.

� corr: the correlation coefficient (used if the fourth component objective function is
turned on).

� datafl: an input file with bivariate data to define the conditional distributions in
simplified GEOEAS format.

� icpri, icsec, icwt: the column numbers for the primary, secondary variables and the
declustering weights in datafl.

� zmin, zmax: all values strictly less than zmin and strictly greater than zmax are
ignored.

� npricut: number of thresholds to define the conditional distributions of the primary
variable within a class of the secondary variable.

� nseccut: number of thresholds to define the classes of secondary variable.

� nlag: the number of variogram lags to consider in the objective function. The closest
nlag lags, measured in terms of variogram distance, are retained.

� isill: a flag specifying whether or not to standardize the sill of the semi-variogram to
the variance of the univariate distribution (isill=1 will standardize).

� nst and c0: the number of variogram structures and the isotropic nugget effect.

� For each of the nst nested structures one must define it, the type of structure; cc, the
c parameter; ang1, ang2, ang3, the angles defining the geometric anisotropy; aa,
the maximum horizontal range; aa1, the minimum horizontal range, aa2, the vertical
range.

� Indicator variograms follow the definition of the direct primary variable variogram.

� itemp, ntmp: option for local updating (0 = global update, 1 = local update) and
number of cells in template.

� ltail, ltpar: lower tail option for local conditional pdf.

� middle, mpar: middle option for local conditional pdf.

� utail, utpar: upper tail option for local conditional pdf.

� fnkbar: file with desired coarse scale k field.
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� nxcs, xmncs, xsizcs: definition of the coarse grid system (x axis).

� nycs, ymncs, ysizcs: definition of the coarsegrid system (y axis).

� nzcs, zmncs, zsizcs: definition of the coarse grid system (z axis).

� omega, id csag: power omega and index to conform average permeability at initial.

B.7 Program: mpsim

The mpsim program solves for fractional flow rate using streamline method. This is a 2D
streamline reservoir simulator. Constant reservoir and fluid properties are considered for
porosity, formation volume factor, reservoir thickness, fluid viscosity and compressibility.
Flowrates for all the wells must be constant and a material balance between the total
production and total injection must be maintained. Time step control is possible. The
parameters required are given below:

� datafl: the data file with ln(k) distribution in the first column in GEOEAS format.

� boundfl: the data file with boundary conditions. Records of this file are discussed in
the exercises.

� initprfl: the data file with initial pressure (psia) for the entire field in GEOEAS
format.

� nsim, nsim1, nsim2: the number of total, start and end realizations.

� idbg: an integer debugging level between 0 and 3. The larger the debugging level,
the more information written out.

� dbgfl: the file for the debugging output.

� outfl: the output file for fractional flow rate at each producing well in GEOEAS
format.

� nx, xmn, xsiz: the definition of the grid system (x axis).

� ny, ymn, ysiz: the definition of the grid system (y axis).

� poro, thick, visco, comp: porosity, reservoir thickness (ft), fluid viscosity (cp) and
fluid compressibility (1/psia).

� nwellf, nprod: the total number of wells and the number of producing wells.

� wellffl: the data file with well locations and flow rates (STB/DAYS). Records in this
file are discussed in the exercise. Records for all the producers must be specified first.

� timespfl: the data file with time steps. Records in this file are discussed in the
exercise.

� np: the number of streamlines.
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B.8 Program: ssc mp

The sequential self-calibration (SSC) method discussed earlier is extended for integrating
dynamic multiwell production multi-phase data [189]. This ssc code allows to generate a
series of permeability realizations that honor a specified spatial variation structure defined
by histogram and variogram, yet match dynamic multiple well production data. Reservoir
and fluid properties must correspond to the input data. Fractional flow data of the producers
are required. Parameters required for ssc are given below:

� datafl: the file with local well conditioning ln(k) data.

� ixl, iyl, ivrl, ivrrl: the column numbers for x, y coordinates, ln(k) and error.

� ntmed, nwell: the number of ln(k) data and the number of wells with flow data.

� itrans: the index for identifying desired histogram.

� transfl: the file with ln(k) histogram. Should be of the same scale as the SSC model.

� ihv, ihwt: the column numbers for ln(k) and weight.

� tms0, vtms0: the mean and the variance of ln(k) distribution.

� wellpmfl: the data file with reservoir and well parameters. Records in this file are
discussed in the exercise.

� flowrtfl: the data file with input flow rate (STB/DAYS) and time step data. Records
in this file are discussed in the exercise.

� wellprfl: the data file with input pressure data (psia). Records in this file are dis-
cussed in the exercise.

� boundfl: the data file boundary data. Records in this file are discussed in the exercise.

� initprfl: the data file with initial pressure (psia) for the entire reservoir in GEOEAS
format.

� seedfl: the data file with initial ln(k) field in GEOEAS format.

� nsim, nsim1, nsim2: the number of total, start and end realizations.

� tmin, tmax: all values strictly less than tmin and strictly greater than tmax are
ignored.

� idbg: an integer debugging level between 0 and 3. The larger the debugging level,
the more information written out.

� dbgfl: the file for the debugging output.

� outfl: the output file for ln(k) distribution in GEOEAS format.
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� objfl: the output file for normalized objective function after each iteration . The
first two records and the last records are total number iteration, initial normalized
objective function, final objective function value.

� prmtchfl: the output file for pressure match responses. This gives the observed, the
initial and the updated pressures at each time step in GEOEAS format.

� fwmtchfl: the output file for fractional flow rate matching responses. This gives
the observed, the initial and the updated fractional flow rates at each time step in
GEOEAS format.

� nx, xmn, xsiz: the definition of the grid system (x axis).

� ny, ymn, ysiz: the definition of the grid system (y axis).

� iseed: the random number seed.

� nmpx, nmpy: the number of master points in x and y directions.

� it gmp: the number of iterations to update master points.

� am y: the factor for defining the constraint interval for optimization.

� nitera, relax, dconve: the maximum number of outer iterations, dumping param-
eter and minimum tolerance.

� it min, eps3, eps4, eps5, ifobj: the optimization parameters.

� radius: the search radius (ft) in kriging.

� ndmin, ndmax: the minimum and the maximum number of samples for kriging.

� ktype: the type of kriging. (ktype=0 ordinary kriging, ktype=1: simple kriging).

� nst and c0: the number of variogram structures and the isotropic nugget effect.

� it, cc, ang, aa1, aa2: for each of the nst nested structures one must define the
type of structure, the c parameter, the angle defining the geometric anisotropy, the
maximum horizontal range, the minimum horizontal range.

� poro, thick, visco, comp: porosity, reservoir thickness (ft), fluid viscosity (cp) and
fluid compressibility (1/psia).

� nwellf, nprod: the number of wells and production wells.

� wellffl: the data file with well locations and flow rates. Records in this file are
discussed in the exercise.

� fractfl: the data file with fractional flow data at production wells. Records in this
file are discussed in the exercise.

� np: the number of streamlines.
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[23] J. E. Capilla, J. Rodrigo, and J. J. Gómez-Hernández. Geostatistical structure of
simulated transmissivity fields that honor piezometric data. In Second European Con-
ference on Geostatistics for Environmental Applications, Nomeber 18-20 1998.

[24] J. Carrera, A. Medina, and X. S.-Vila. Geostatistical formulations of groundwater
coupled inverse problems. In Fourth International Geostatistics Congress, pages 779–
792, Troia, September 1992.

[25] J. Carrera and S. Neuman. Estimation of aquifer parameters under transient and
steady state conditions: 1. maximum likelihood method incorporating prior informa-
tion. Water Resources Research, 22(2):199–210, 1986.

[26] J. Carrera and S. Neuman. Estimation of aquifer parameters under transient and
steady state conditions: 2. uniqueness, stability, and solution algorithms. Water
Resources Research, 22(2):211–227, 1986.

[27] J. Carrera and S. P. Neuman. Estimation of aquifer parameters under transient and
steady state conditions: Conditions: 3. application to synthetic and field data. Water
Resources Research, 22(2):228–242, 1986.

[28] R. D. Carter, L. Kemp, A. Pierce, and D. Williams. Performance matching with
constraints. SPE Journal, pages 187–196, April 1974.

[29] J. Chang and Y. C. Yortsos. Pressure transient analysis of fractal reservoirs. In SPE
Annual Conference and Exhibition, Houston, TX, October 1988. Society of Petroleum
Engineers. SPE Paper Number18170.

[30] M. M. Chang, M. Szpakiewicz, R. schatzinger, S. Jackson, B. Sharma, M. Tham,
and F. H. Lim. Integration of a geological-engineering model with production perfor-
mance: A case study at patrick draw field, wyoming. In 1993 SPE Annual Technical
Conference and Exhibition, pages 829–842, Houston, TX, October 1993. Society of
Petroleum Engineers. SPE Paper Number 26499.

[31] G. Chavent, M. Dupuy, and P. Lemonnier. History matching by use of optimal theory.
SPE Journal, pages 74–86, February 1975.

[32] W. H. Chen, G. Gavalas, J. Seinfeld, and M. L. Wasserman. A new algorithm for
automatic history matching. SPE Journal, pages 593–608, December 1974.



192 BIBLIOGRAPHY

[33] Y. M. Chen. Parallelism by hierarchy of GPST inversion algorithm for elastic wave
equation. Appl. Numer. Math., 4:83–95, 1988.

[34] Y. M. Chen and J. Q. Liu. A numerical algorithm for remote sensing of thermal
conductivity. J. Comput. Phys., 43:315–326, 1981.

[35] Y. M. Chen and J. Q. Liu. A numerical algorithm for solving inverse problems of
two-dimensional wave equations. J. Computational Physics, 50:193–208, 1983.

[36] Y. M. Chen and J. Q. Liu. An iterative numerical algorithm for solving multi-
parameter inverse problems of evolutional partial differential equations. J. Comput.
Phys., 53:429–442, 1984.

[37] Y. M. Chen and J. Q. Liu. Efficiency improvement of GPST inversion algorithm. J.
Comput. Phys., 72:372–382, 1987.

[38] Y. M. Chen and F. G. Zhang. Hierarchical multigrid strategy for efficiency improve-
ment of the GPST inversion algorithm. Appl. Numer. Math., 6:431–446, 1989.

[39] L. Chu, A. C. Reynolds, and D. S. Oliver. Computation of sensitivity coefficients for
conditioning the permeability field to well-test pressure data. In Situ, 19(2):179–223,
1995.

[40] P. M. Clifton and S. P. Neuman. Effects of kriging and inverse modeling on conditional
simulation of the avra valley aquifer in southern arizona. Water Resources Research,
18(4):1215–1234, 1982.

[41] K. H. Coats, J. R. Dempsey, and J. H. Henderson. A new technique for determining
reservoir description from field performance data. SPE Journal, pages 66–74, March
1968.

[42] R. L. Cooley. Incorporation of prior information on parameters into nonlinear regres-
sion groundwater flow models, 1. theory. Water Resources Research, 18(4):965–976,
1982.

[43] L. B. Cunha, D. S. Oliver, R. A. Redner, and A. C. Reynolds. A Hybrid Markov
Chain Monte Carlo method for generating permeability fields conditioned to multi-
well pressure data and prior information. In SPE Annual Technical Conference and
Exhibition, Denver, CO, October 1996. Society of Petroleum Engineers. SPE Paper
Number 36566.

[44] G. Dagan. Statistic modeling of groundwater flow by unconditional and conditional
probabilities: The inverse problem. Water Resources Research, 21(1):65–72, 1985.

[45] E. Damsleth, C. B. Tjolsen, K. H. Omre, and H. H. Haldorsen. A two-stage stochastic
model applied to a north sea reservoir. In 65th Annual Technical Conference and
Exhibition, pages 791–802, New Orleans, LA, September 1990. Society of Petroleum
Engineers.



BIBLIOGRAPHY 193

[46] A. Datta-Gupta and M. J. King. A semianalytic approach to tracer flow modeling in
heterogeneous permeable media. Adv. in Water Resources, 18(1):9–24, 1995.

[47] A. Datta-Gupta, L. W. Lake, and G. A. Pope. Characterizing heterogeneous per-
meability media with spatial statistics and tracer data using sequential simulation
annealing. Math. Geology, 27(6):763–787, 1995.

[48] A. Datta-Gupta, L. W. Lake, G. A. Pope, and M. J. King. A type-curve approach to
analyzing two-well tracer tests. SPE Formation Evaluation, March 1995.

[49] A. Datta-Gupta, D. W. Vasco, J. C. S. Long, and S. Vomvoris. Stochastic modeling of
spatial heterogeneities conditioned to hydraulic and tracer tests. In Proc. 5th Annual
International Conference on High Level Radioactive Waste Management, volume 4,
pages 2624–2632, 1994.

[50] G. de Marsily, G. Lavedau, M. Boucher, and G. Fasanino. Interpretation of interfer-
ence test in a well field using geostatistical techniques to fit the permeability distribu-
tion in a reservoir model. In G. Verly, M. David, A. G. Journel, and A. Marechal, ed-
itors, Geostatistics for Natural Resources Characterization, Proceedings of the NATO
Advanced Study Institute, pages 831–849. Dordrecht, Holland, 1984.

[51] J. P. Delhomme. Spatial variability and uncertainty in groundwater flow parameters:
A geostatistical approach. Water Resources Research, 15(2):269–280, 1979.

[52] X. Deng. Description of Heterogeneous Reservoirs Using Pressure and Tracer Data.
PhD thesis, Stanford University, Stanford, CA, 1996.

[53] X. Deng and R. Horne. Description of heterogeneous reservoir using tracer and pres-
sure data simultaneously. In 1995 SPE Annual Technical Conference and Exhibition,
pages 639–652, Dallas, TX, October 1995. Society of Petroleum Engineers. SPE Paper
Number 30590.

[54] C. V. Deutsch. Calculating effective absolute permeability in sandstone/shale se-
quences. SPE Formation Evaluation, pages 343–348, September 1989.

[55] C. V. Deutsch. Annealing Techniques Applied to Reservoir Modeling and the Integra-
tion of Geological and Engineering (Well Test) Data. PhD thesis, Stanford University,
Stanford, CA, 1992.

[56] C. V. Deutsch and A. G. Journel. The application of simulated annealing to stochastic
reservoir modeling. In Report 4, Stanford Center for Reservoir Forecasting, Stanford,
CA, May 1991.

[57] C. V. Deutsch and A. G. Journel. Annealing techniques applied to the integration of
geological and engineering data. In Report 5, Stanford Center for Reservoir Forecast-
ing, Stanford, CA, May 1992.

[58] C. V. Deutsch and A. G. Journel. GSLIB: Geostatistical Software Library and User’s
Guide. Oxford University Press, New York, 1992.



194 BIBLIOGRAPHY

[59] C. V. Deutsch and A. G. Journel. The application of simulated annealing to stochastic
reservoir modeling. SPE Advanced Techology Series, 2(2), April 1994.

[60] C. V. Deutsch and A. G. Journel. Integrating well test-derived absolute permeabilities.
In J. M. Yarus and R. L. Chambers, editors, Stochastic Modeling and Geostatistics:
Principles, Methods, and Case Studies, pages 131–142. AAPG Computer Applications
in Geology, No. 3, 1995.

[61] C. V. Deutsch and A. G. Journel. GSLIB: Geostatistical Software Library and User’s
Guide. Oxford University Press, New York, 2nd edition, 1998.

[62] C. V. Deutsch and S. Srinivasan. Improved reservoir management through ranking
stochastic reservoir models. In SPE/DOE Tenth Symposium on Improved Oil Recov-
ery, Tulsa, OK, pages 105–113, Washington, DC, April 1996. Society of Petroleum
Engineers. SPE Paper Number 35411.

[63] C. V. Deutsch and L. Wang. Hierarchical object-based stochastic modeling of fluvial
reservoirs. Math Geology, 28(7):857–880, 1996.

[64] R. C. Earlougher. Advances in Well Test Analysis. Society of Petroleum Engineers,
New York, NY, 1977.

[65] Y. Emsellem and G. de Marsily. An automatic solution for the inverse problem. Water
Resources Research, 7(5):1264–1283, 1971.

[66] R. Ewing and T. Lin. A class of parameter estimation techniques for fluid flow in
porous media. Adv. in Water Resources, 14(2):89–97, 1991.

[67] G. Fasanino, J.-E. Molinard, G. de Marsily, and V. Pelcé. Inverse modeling in gas
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[111] A. G. Journel and J. J. Gómez-Hernández. Stochastic imaging of the Wilmington
clastic sequence. SPE Paper Number 19857, 1989.

[112] A. G. Journel and C. J. Huijbregts. Mining Geostatistics. Academic Press, New York,
1978.

[113] A. G. Journel and E. H. Isaaks. Conditional indicator simulation: Application to a
Saskatchewan uranium deposit. Mathematical Geology, 16(7):685–718, 1984.



198 BIBLIOGRAPHY

[114] P. K. Kitanidis and E. G. Vomvoris. A geostatistical approach to the inverse prob-
lem in groundwater modeling (steady state) and one-dimensional simulations. Water
Resources Research, 19(3):677–690, 1983.

[115] C. Kravaris and J. H. Seinfeld. Identification of parameters in distributed parameter
systems by regularization. SIAM J. Control and Optimization, 23(2):217–241, 1985.

[116] C. Kravaris and J. H. Seinfeld. Identifiability of spatially-varying conductivity from
point observation as an inverse sturm-liouville problem. SIAM J. Control and Opti-
mization, 24(3):522–542, 1986.

[117] C. Kravaris and J. H. Seinfeld. Identification of spatially varying parameters in dis-
tributed parameter systems by discrete regularization. J. Mathematical Analysis and
Appl., 119:128–152, 1986.

[118] J. L. Landa. Reservoir Parameter Estimation Constrained to Pressure Transients,
Performance History and Distributed Saturation Data. PhD thesis, Stanford Univer-
sity, Stanford, CA, 1997.

[119] J. L. Landa and R. N. Horne. Procedure to integrate well test data, reservoir per-
formance history and 4-d seismic information into a reservoir description. In SPE
Annual Technical Conference and Conference, San Antonio, TX, October 1997. SPE
Paper Number 38653.

[120] J. L. Landa, M. M. Kamal, C. D. Jenkins, and R. N. Horne. Reservoir characterization
constrained to well test data: A field example. In 1996 SPE Annual Technical Confer-
ence and Exhibition, pages 177–192, Denver, CO, October 1996. Society of Petroleum
Engineers. SPE Paper Number 36511.

[121] A. M. LaVenue and J. F. Pickens. Application of a coupled adjoint sensitivity and
kriging approach to calibrate a groundwater flow model. Water Resources Research,
28(6):1543–1569, 1992.

[122] A. M. LaVenue, B. S. RamaRao, G. de Marsily, and M. G. Marietta. Pilot Point
methodology for automated calibration of an ensemble of conditionally simulated
transmissivity fields, 2. application. Water Resources Research, 31(3):495–519, 1995.

[123] B. O. Lee. Evaluation of devonian shale reservoirs using multiwell pressure transient
testing data. In SPE/DOE Unconventional Gas Recovery Symposium, Pittsburgh,
PA, May 1982. Society of Petroleum Engineers. SPE/DOE Paper Number 10838.

[124] T. Lee, C. Kravaris, and J. H. Seinfeld. History matching by spline approximation
and regrlarization in single-phase areal reservoirs. SPE Reservoir Engineering, 1:??,
1986.

[125] T. Lee and J. H. Seinfeld. Estimation of two-phase petroleum reservoir properties by
regularization. J. Computational Physics, 69:397–419, 1987.



BIBLIOGRAPHY 199

[126] P. M. Lemouzy, R. Eschard, and H. Beucher. An integrated approach EOR evaluation
of production scenarios in the field delineation phase. In 66th SPE Annual Techni-
cal Conference and Exhibition, pages 209–219, Dallas, TX, October 1991. Society of
Petroleum Engineers. SPE Paper Number 22906.

[127] J. Q. Liu and Y. M. Chen. An iterative algorithm for solving inverse problems of two-
dimensional diffusion equations. SIAM J. Sci. Stat. Comput., 5(2):255–269, 1984.

[128] X. Y. Liu and Y. M. Chen. A generalized pulse-spectrum technique (gpst) for deter-
mining time-dependent coefficients of one-dimensional diffusion equations. SIAM J.
Sci. Stat. Comput., 8(3):436–445, 1987.

[129] X. Y. Liu and Y. M. Chen. Convergence of a generalized pulse-spectrum technique
(gpst) for inverse problems of i-d diffusion equations in space-time domain. Math.
Comp., 51(184):477–489, 1988.

[130] M. E. Lord and R. E. Collins. Detecting compartmented gas reservoirs through pro-
duction performance. In 1991 SPE Annual Technical Conference and Exhibition,
pages 575–581, Dallas, TX, October 1991. Society of Petroleum Engineers. SPE Pa-
per Number 22941.

[131] E. M. Makhlouf, W. H. Chen, M. L. Wasserman, and J. H. Seinfeld. A general
history matching algorithm for three-phase, three-dimensional petroleum reservoirs.
SPE Advanced Technology Series, 1(2):83–92, 1993.

[132] V. Maroongroge, N. Saad, and G. A. Pope. Use of inverse modeling for conditioning
geostatistical models to vertical tracer profiles. In 1995 SPE Annual Technical Confer-
ence and Exhibition, pages 661–672, Dallas, TX, October 1995. Society of Petroleum
Engineers. SPE Paper Number 30592.

[133] G. Matheron, H. Beucher, H. de Fouquet, A. Galli, D. Guerillot, and C. Ravenne.
Conditional simulation of the geometry of fluvio-deltaic reservoirs. SPE Paper Number
16753, 1987.

[134] C. D. McElwee. Sensitivity analysis of groundwater models. In Advances in Transport
Phenomena in Porous Media. NATO Advanced Science Institute, Series E, No. 82,
1984.

[135] L. Nazareth. A conjugate direction algorithm without line searchers. Journal of
Optimization Theory and Applications, pages 373–387, November 1977.

[136] S. P. Neuman and S. Yakowitz. A stochastic approach to the inverse problem of
aquifer hydrology, 1. theory. Water Resources Research, 15(4):845–860, 1979.

[137] B. Noetinger and A. Haas. Permeability averaging for well tests in 3D stochastic
reservoir models. In 1996 SPE Annual Technical Conference and Exhibition, pages
919–925, Denver, CO, October 1996. Society of Petroleum Engineers. SPE Paper
Number 36653.



200 BIBLIOGRAPHY

[138] D. S. Oliver. The averaging process in permeability estimation from well test data.
SPE Formation Evaluation, pages 319–324, September 1990.

[139] D. S. Oliver. Estimation of radial permeability distribution from well test data. In
SPE Annual Technical Conference and Exhibition, pages 243–250, New Orleans, LA,
September 1990. Society of Petroleum Engineers. SPE Paper Number 20555.

[140] D. S. Oliver. Estimation of radial permeability distribution from well test pressure
data. SPE Formation Evaluation, pages 290–296, December 1992.

[141] D. S. Oliver. Incorporation of transient pressure data into reservoir characterization.
In Situ, 18(3):243–275, 1994.

[142] D. S. Oliver. A comparsion of the value of interference and well-test data for mapping
permeability and porosity. In Situ, 20(1):41–59, 1996.

[143] D. S. Oliver, L. B. Cunha, and A. C. Reynolds. Markov Chain Monte Carlo methods
for conditioning a permeability field to a pressure data. Math. Geology, 29(1):61–91,
1997.

[144] D. S. Oliver, N. He, and A. C. Reynolds. Conditioning permeability fields to pres-
sure data. In 5th European Conference on the Mathematics of Oil Recovery, Leoben,
Austria, September 1996.

[145] A. Ouenes, S. Bhagavan, P. H. Bunge, and B. J. Travis. Application of simulated
annealing and other global optimization methods to reservoir description: Myths and
realities. In SPE 69th Annual Conference and Exhibition, pages 547–561, Washington,
DC, September 1994. Society of Petroleum Engineers. SPE Paper Number 28415.

[146] A. Ouenes, G. Fasanino, and R. L. Lee. Simulated annealing for interpreting gas/water
laboratory corefloods. In 1992 SPE Annual Technical Conference and Exhibition,
pages 43–55, Washington, DC, October 1992. Society of Petroleum Engineers. SPE
Paper Number 24870.

[147] R. Parish, V. Calderbank, A. Watkins, A. Muggeridge, A. Goode, and P. Robinson.
Effective history matching: The application of advanced software techniques to the
history-matching process. SPEJ, pages 187–196, 1993.

[148] Petroleum Society of CIM / Society of Petroleum Engineers. Pressure Transient Field
Data Showing Fractal Reservoir Structure, Calgary, AB, June 10-13 1990.

[149] D. W. Pollock. Documentation of computer programs to compute and display path-
line results from the us geological survey modular three-dimansional finite-difference
ground-water flow model. Technical report, U.S. Geological Survey, 1989. Open File
Report 89-381.

[150] R. Raghavan. Well Test Analysis. PTR Prentice-Hall, Inc., New Jersey, NJ, 1993.



BIBLIOGRAPHY 201

[151] D. Rahon, G. Blanc, and D. Guérillot. Gradients method constrained by geological
bodies for history matching. In SPE Annual Technical Conference and Exhibition,
pages 841–850, Denver, CO, October 1996. Society of Petroleum Engineers. SPE
Paper Number 36568.

[152] D. Rahon, P. F. Edoa, and M. Masmoudi. Identification of geological shapes in
reservoir engineering by history matching production data. In SPE Annual Technical
Conference and Conference, New Orleans, LA, September 1998. SPE Paper Number
48969.

[153] D. Rahon and M. Masmoudi. Inversion of geological shapes in reservoir engineering
using well-tests and history matching of production data. In SPE Annual Technical
Conference and Conference, pages 141–153, San Antonio, TX, October 1997. SPE
Paper Number 38656.

[154] B. S. RamaRao, A. M. LaVenue, G. de Marsily, and M. G. Marietta. Pilot Point
methodology for automated calibration of an ensemble of conditionally simulated
transmissivity fields, 1. theory and computational experiments. Water Resources
Research, 31(3):475–493, 1995.

[155] A. C. Reynolds, N. He, L. Chu, and D. S. Oliver. Reparamerterization techniques for
generating reservoir descriptions conditioned to variograms and well-test pressure. In
1995 SPE Annual Technical Conference and Exhibition, pages 609–624, Dallas, TX,
October 1995. Society of Petroleum Engineers. SPE Paper Number 30588.

[156] F. Roggero. Direct selection of stochastic model realizations constrained to histori-
cal data. In SPE Annual Technical Conference and Conference, San Antonio, TX,
October 1997. SPE Paper Number 38731.

[157] F. Roggero and L. Hu. Gradual deformation of continuous geostatistical models for
history matching. In SPE Annual Technical Conference and Conference, New Orleans,
LA, September 1998. SPE Paper Number 49004.

[158] A. J. Rosa and R. N. Horne. Reservoir description by well test analysis using cyclic
flow rate variation. In 1991 SPE Annual Technical Conference and Exhibition, pages
433–448, Dallas, TX, October 1991. Society of Petroleum Engineers. SPE Paper
Number 22698.

[159] A. J. Rosa and R. N. Horne. Pressure transient behavior in reservoirs with an internal
circular discontinuity. In 1993 SPE Annual Technical Conference and Exhibition,
pages 389–401, Houston, TX, October 1993. Society of Petroleum Engineers. SPE
Paper Number 26455.

[160] Y. Rubin and G. Dagan. Stochastic identification of transmissivity and effec-
tive recharge in steady groundwater flow, 1. theory. Water Resources Research,
23(7):1185–1192, 1987.

[161] Y. Rubin and G. Dagan. Stochastic identification of transmissivity and effective
recharge in steady groundwater flow, 2. case study. Water Resources Research,
23(7):1193–1200, 1987.



202 BIBLIOGRAPHY

[162] M. A. Sabet. Well Test Analysis, volume 8 of Contributions in Petroleum Geology
and Engineering. Gulf Publishing Company, Houston, 1991.

[163] R. K. Sagar, B. G. Kelkar, and L. G. Thompson. Reservoir description by integration
of well test data and spatial statistics. In 1993 SPE Annual Technical Conference
and Exhibition, pages 475–489, Houston, TX, October 1993. Society of Petroleum
Engineers. SPE Paper Number 26462.

[164] R. K. Sagar, B. G. Kelkar, and L. G. Thompson. Reservoir description by integration
of well test data and spatial statistics. SPE Formation Evaluation, pages 267–274,
December 1995.

[165] P. C. Shah, G. R. Gavalas, and J. H. Seinfeld. Error analysis in history matching:
The optimum level of parametrization. SPE Journal, pages 219–228, June 1978.

[166] S. Srinivasan and A. G. Journel. Simulation of permeability field conditioned to well
test data. In SPE Annual Technical Conference and Conference, New Orleans, LA,
September 1998. SPE Paper Number 49289.

[167] A. J. Sultan, A. Ouenes, and W. W. Weiss. Reservoir description by inverse modeling:
Application to EVGSAU field. In 1993 SPE Annual Technical Conference and Exhi-
bition, pages 637–652, Houston, TX, October 1993. Society of Petroleum Engineers.
SPE Paper Number 26478.

[168] J. E. Sykes, J. L. Wilson, and R. W. Andrews. Sensitivity analysis for steady-state
groundwater flow using adjoint operators. Water Resources Research, 21(3):359–371,
1985.

[169] T. Tan and N. Kalogerakis. Improved reservoir characterization using automatic
history matching procedures. Journal of Canadian Petroleum Technology, 32(6):26–
33, May-June 1993.

[170] Y. N. Tang, Y. M. Chen, W. H. Chen, and M. L. Wasserman. Generalized pulse-
spectrum technique for 2-d and 2-phase history matching. Appl. Numer. Math., 5:529–
539, 1989.

[171] A. Tarantola. Inverse Problem Theory: Methods for Data Fitting and Model Param-
eter Estimation. Elsevier, Amsterdam, The Netherlands, 1987.

[172] E. Tauzin. Integration of well test data into stochastic modeling. Master’s thesis,
Stanford University, Stanford, CA, 1995.

[173] M. R. Thiele. Modeling Multiphase Flow in Heterogeneous Media Using Streamtubes.
PhD thesis, Stanford University, Stanford, CA, 1994.

[174] M. R. Thiele, M. J. Blunt, and F. M. Orr, Jr. Predicting multicomponent, multiphase
flow in heterogeneous systems using streamtubes. In 4th European Conference on the
Mathematics of Oil Recovery, Roros, Norway, June 1994.



BIBLIOGRAPHY 203

[175] M. R. Thiele, M. J. Blunt, and F. M. Orr, Jr. Simulating flow in heterogeneous
systems using streamtubes. SPE Reservoir Engineering, pages 5–12, February 1996.

[176] H. Tjelmeland and H. Omre. Semi-Markov random fields. In A. Soares, editor,
Geostatistics Troia 1992, volume 2, pages 493–504. Kluwer, 1993.

[177] H. Tjelmeland and H. Omre. A complex sand-shale facies model conditioned on
observations from wells, seismics, and production. In Fifth International Geostatistics
Congress, Wollongong, September 1996.

[178] T. T. Tran, X.-H. Wen, and R. A. Behrens. Efficient conditioning of 3D fine-scale
reservoir model to multiphase production data using streamline-based coarse-scale
inversion and geostatistical downscaling. In SPE Annual Technical Conference and
Conference, Houston, TX, October 1999. SPE Paper Number 56518.

[179] D. S. Tsien and Y. M. Chen. Computational methods in nonlinear mechanics. In Proc.
Int. Conf. Comput. Meth. Nonlinear Methods, pages 935–943, Austin, TX, 1974. The
University of Texas, Austin.

[180] K. Tyler, A. Henriquez, F. Georgsen, L. Holden, and H. Tjelmeland. A program for
3D modeling of heterogeneities in a fluvial reservoir. In 3rd European Conference on
the Mathematics of Oil Recovery, pages 31–40, Delft, June 1992.

[181] K. Tyler, T. Svanes, and A. Henriquez. Heterogeneity modelling used for production
simulation or fluvial reservoir. SPE Formation Evaluation, pages 85–92, June 1992.

[182] H. K. van Poollen. A hard look at radius of drainage and stabilization-time equations.
Oil and Gas Journal, pages 139–147, September 1964.

[183] D. W. Vasco, A. Datta-Gupta, and J. C. S. Long. Integrating field production history
in stochastic reservoir characterization. In SPE 71st Annual Technical Conference and
Exhibition, Denver, CO, October 1996. Society of Petroleum Engineers. SPE Paper
Number 36567.

[184] N. Vashist, R. N. Dennis, A. K. Rajvanshi, H. R. Taneja, R. K. Walia, and P. K.
Sharma. Reservoir facies and their distribution in a heterogeneous carbonate reservoir:
An integrated approach. In 1993 SPE Annual Technical Conference and Exhibition,
pages 819–828, Houston, TX, October 1993. Society of Petroleum Engineers. SPE
Paper Number 26498.

[185] M. L. Wasserman, A. S. Emanuel, and J. Seinfeld. Practical applications of optimal-
control theory to history-matching multiphase simulator models. SPE Journal, pages
347–355, August 1975.

[186] A. T. Watson, J. H. Seinfeld, G. R. Gavalas, and P. T. Woo. History matching in
two-phase petroleum reservoirs. SPE Journal, pages 521–532, December 1980.

[187] X. H. Wen. Geostatistical Methods for Prediction of Mass Transport in Groundwater.
PhD thesis, Royal Institute of Technology, Stockholm, Sweden, Stockholm, Sweden,
1995.



204 BIBLIOGRAPHY

[188] X. H. Wen. Stochastic Simulation of Groundwater Flow and Mass Transport in Het-
erogeneous Aquifers: Conditioning and Problem of Scales. PhD thesis, Polytechnic
University of Valencia, Spain, Valencia, Spain, 1996.

[189] X. H. Wen, J. E. Capilla, C. V. Deutsch, J. J. Gómez-Hernández, and S. A. Cullick.
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